Ia 'd VE| essencial

apostila

versao 5.1

Laravel 5.1 Essencial
O framework PHP para artesaos Web

Erik Figueiredo

[@NoloN

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

Dedico este livro a minha esposa e filha pela paciéncia e apoio.

Conteudo

Introducdo e 1
Ambiente de desenvolvimento
O que é Orientacdo a Objetos? e 2
Oqueé MVC . . . e 10
Oqueéumframework 11
O que vamos desenvolver? 12
Aonde conseguir ajuda? 12
Projetofinal 12
Preparandoo Laravel 13
Instalandoo Laravel 5. 13
Rodando o PHP Built-In Server com Artisan 13
ConfiguragOes iniciais 14
Configurando o bancodedados 15
Conhecendo o banco de dados do nosso projeto 17
Criando arquivos de Migration L Lo L 18
Criadoumarquivode Seed 21
Model, View e Controller 23
Rotas o 23
Criandoum controller L 27
Criando um controller com artisan L oL 28
Consultandoobancodedados 31
Criandoum model 32
CRUD 36
Criando VIEWs e 37
Listando produtos 37
Cadastrandoum produto L 38
Retornandoum produto 40
Editandoousudrio e 41
Removendoousudrio L 45

Abstraindo o CRUD 45

CONTEUDO

ValidacOes e 51
Relacionamentos 64
Painel de administracdo 76
Tema da administragdo 76
Rotacom /admin 81
Middleware 84
Como configurar a autenticacdo 84
Site . . . e e 88
Temadaloja e 88
Listagem de categorias com View Composer 88
Listagem de produtos por categorias 88
Paginade produtos 88
Carrinhodecompras 89
Criando model sem acesso a bancodedados 89
Adicionar produto 89
Remover produto 89
Alterar quantidade deum produto Lo 89
Listar no carrinho de compras 89
Finalizar compra com registro ou login dousuario 89
Integracdo com Web Services 90
Integrando com o PagSeguro 90

Integrando com 0s Correios 90

Introducao

Ambiente de desenvolvimento

Atualmente estou usando o Ubuntu com PHP 5.6.8, mas sempre mantenho atualizado na versdo
mais rescente e o banco de dados MySql, claro que vocé deve usar o que ja esta acostumado, por
exemplo, se usa Windows com Xampp ou Wamp, se usa Mac ou qualquer outro tipo de configuracao
de ambiente de desenvolvimento, ndo importa, s6 peco que verifiquem se o seu ambiente esta de
acordo com os seguintes pré-requisitos, que sdo obrigatorios para o Laravel rodar sem problemas.

« PHP >=5.5.9 (lembre-se que recomendei a versdo >= 5.6)
+ OpenSSL PHP Extension

« PDO PHP Extension

Mbstring PHP Extension

Tokenizer PHP Extension

Outro ponto importante é que vamos precisar do Composer®.

Para instalar o composer va até o site oficial (https://getcomposer.org/?) e escolha como prefere fazer
o Download, ndo importa como sera feito, desde que vocé tenha o arquivo.

Existem duas formas de executar o Composer, a primeira é conhecida como instalagao local, nela o
arquivo composer . phar fica no diretdrio que vocé baixou ou que vai comecar o seu projeto, todos
os comando sdo executados usando o PHP (via terminal) seguido do arquivo phar, assim.

php composer .phar [comando]

A segunda forma é chamada de instalacdo global, ou seja, vocé tem o Composer configurado no
sistema operacional de forma a conseguir usar os comandos em qualquer diretério sem que precise
se preocupar em baixar toda vez que vai usar, a utilizacao é simplificada também.

composer [comando]

Além das diferencas apontadas acima (local e forma de usar) ndo existem outras vantagens e
desvantagens em relacdo a utilizagdo de uma forma ou de outra, eu prefiro a global, ja4 que uso
muito o Composer no meu dia a dia.

Existe um passo a passo para instalar o Composer de forma global no Windows, Linux, Unix e OSX
na documentacao oficial.

"https://getcomposer.org/
*https://getcomposer.org/

https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/

© 00 N O U b W N =

Introducéio 2

+ Instalar o Composer globalmente no Windows: https://getcomposer.org/doc/00-intro.md#installation-

windows?

« Instalar o Composer Globalmente no Linux, Unix e OSX: https://getcomposer.org/doc/00-
intro.md#installation-linux-unix-osx*

Existem até instaladores para estes sistemas operacionais nos links acima.

Nao se preocupe, falaremos mais sobre o composer no préximo capitulo.

O que é Orientacao a Objetos?

Note que s6 com esta sessdo ja teriamos contetido suficiente para escrever dois livros, entdo vou
tentar simplificar o assunto e focar apenas no necessario para usar o Laravel, claro que posso me
empolgar e ir além, ndo estranhe se isso acontecer.

A orientagdo a objetos ¢ um modelo de analise, projeto e programacao de sistemas
de software baseado na composigdo e interacdo entre diversas unidades de software
chamadas de objetos. — Wikipedia

Orientacdo a objetos define que cada parte da aplicacdo pode ser definida como um objeto que possui
atributos e métodos, uma defini¢do mais simples para um objeto seria dizer que ele possui atributos
e acdes, sendo que cada acdo ou método é definido usando a palavra-chave function enquanto um
atributo é uma variavel do objeto ou classe. O c6digo a seguir mostra um claro exemplo do que é
um objeto.

<?php

class Objeto {
$atributo;

function metodoAcao() {

return 'Hello World';

Este bloco de cddigo, por si so, ndo traz nenhum resultado direto a aplicagao, a classe ou objeto em
questdo ficara disponivel para ser usado durante a execucdo da aplicagdo, veja o exemplo anterior
com a utilizagao.

*https://getcomposer.org/doc/00-intro.md#installation-windows
“https://getcomposer.org/doc/00-intro.md#installation-linux-unix-osx

https://getcomposer.org/doc/00-intro.md#installation-windows
https://getcomposer.org/doc/00-intro.md#installation-windows
https://getcomposer.org/doc/00-intro.md#installation-linux-unix-osx
https://getcomposer.org/doc/00-intro.md#installation-linux-unix-osx
https://getcomposer.org/doc/00-intro.md#installation-windows
https://getcomposer.org/doc/00-intro.md#installation-linux-unix-osx

O N O O & W N~

(RN
N O ©

0 N O O B~ W N -

Y
W N~ O

Introducéio 3

<?php

class Objeto {
$atributo;

function metodoAcao() {
return 'Hello World';

$objeto = new Objeto;
echo $objeto->metodoAcao();

Na penultima linha do cédigo acima usamos a palavra-chave new para carregar o objeto dentro da
variavel $ob jeto e entdo ter acesso aos seus recursos na linha seguinte, este processo é chamado de
instanciacéo, é comum dizer que ‘vamos instanciar a classe tal’.

Embora funcional este objeto ainda nao esta escrito da melhor forma possivel, um objeto escrito
segundo os padroes modernos do PHP deve obrigatériamente seguir a PSR-2 (o que nos forca a usar
a PSR-4 e a PSR-1).

Este é um tipico objeto escrito no PHP de acordo com as praticas modernas.

<?php
namespace WebDevBr\Orientacao\Objetos;

class Objeto

{
public $atributo;
public function metodoAcao()
{
return 'Hello World';
}
}

E a correta utilizagao.

N O O & W N =

Introducéio 4

<?php

/* Carregamento do arquivo da classe (com include/require, comando 'use' ou auto\
load) */

$objeto = new WebDevBr\Orientacao\Objetos\Objeto;
echo $objeto->MetodoAcao();

Cada objeto deve estar em um arquivo unico, ter um namespace e ser carregado por um autoloader
de acordo com as PSRs, se nao esta familiarizado com estes conceitos recomendo que invista algum
tempo no site oficial do grupo PHP FIG, mantedor das PSRs, embora néo seja obrigatdrio para o
entendimento deste livro, com certeza vai ajudar muito.

Aqui o site do PHP FIG http://www.php-fig.org/°.

Vantagens da orientacao a objetos!

A principal vantagem de se trabalhar com orientagéo a objetos é a reusabilidade do coédigo, focamos
em escrever menos e reaproveitar mais o que ja foi escrito, essa pratica leva a cddigos mais limpos,
menores e faceis de manter, além da seguranca ja que cada classe s6 tem acesso aos métodos/atributos
dela ou que permitirmos.

A estrutura da orientacao a objetos

A orientacio a objetos esta estabelecida sobre 4 pilares basicos de desenvolvimento que serdo listados
a seguir.

Heranca

Heranca, na pratica, é o que faz com que uma classe tenha acesso a recursos de outra, ta, vai um
pouco além, mas ja é um bom comego, vamos moldar isso.

Imagine que vocé tem uma classe que retorna a letra A (nao é criativo, mas é funcional, e isso é tudo
0 que precisamos agora).

*http://www.php-fig.org/

http://www.php-fig.org/
http://www.php-fig.org/

, O O 0 9 O O b W N =~

[ENEN

, O O 0 N O O b W N =

AN

© 00 39 O O b W N =

Introducéio

<?php

namespace WebDevBr/Orientacao/Objetos;

class A
{
public function getlLetterA()
{
return 'A';
}
}

E também temos uma classe B que vai herdar a classe A.
<?php
namespace WebDevBr/Orientacao/Objetos;

class B extends A

{
public function getlLetterB()
{
return 'B';
}
}

E por fim uma classe C que herda a classe B.

<?php

namespace WebDevBr/Orientacao/Objetos;

class C extends B

{
public function getlLetterC()
{
return 'C';
}
}

Ja deu pra entender que sempre que formos herdar uma classe usamos o extends, mas o que
realmente aconteceu ali? Sempre que herdarmos uma classe teremos acesso a todos os métodos
e atributos que nos forem permitidos, veremos mais sobre permitir e proibir acesso a métodos e
atributos quando falarmos de Encapsulamento logo mais a frente. Veja agora como usamos classes

com heranca.

O N O O & W N~

0 N O O & W N~

B S s s
©O© 00 9 O O » WO NN~ O ©

Introducéio

<?php

/* Carregamento dos arquivos das classe (com include/require ou autoload) */

$c = new WebDevBr\Orientacao\Objetos\C;
echo $c->getlLetterA(). '
";

echo $c->getletterB(). '
";

echo $c->getlLetterC();

Além disso ainda podemos executar os métodos internamente na classe usando a variavel $this.

<?php
namespace WebDevBr/Orientacao/Objetos;

class C extends B

{
public function getlLetterB()
{
return 'C';
}
public function getlLetters()
{
$str = $this->getLetterA().'
";
$str .= $this->getlLetterB().'
';
$str .= $this->getlLetterC();
}
}

$c = new WebDevBr\Orientacao\Objetos\C;
echo $c->getlLetters();

Isto é o que chamamos de heranca vertical, quando uma classe extende outra, que extende outra,
e outra... Ainda temos a heranca horizontal, representada pelos traits, que nio falaremos aqui ja
que ndo sera usado, e a heranga multipla que nao é aplicado no PHP, por enquanto.

Abstracao

Muitas vezes precisamos criar métodos em varias classes que sdo comuns a varios outros objetos,
muitas vezes o codigo é exatamente o mesmo em todos os lugares que ¢ usado, nestes casos temos
recursos para nos auxiliar da forma correta, que tal criarmos uma classe intermediaria que guarde
este(s) método(s).

RGN

RGN

O O 0 N O O b W N =~

O O 0 N O O b W N =~

Introducéio 7

Vamos imaginar um novo cenario, em que as letras nao vao herdar uma a outra (faz até mais sentido),
e todas vao retornar a sua propria letra, mas pense, e se em algum momento tivermos que alterar,
por exemplo, para letras minusculas, sdo 26 classes, uma para cada letra.

<?php
namespace WebDevBr/Orientacao/Objetos;

abstract class Letters

{
public function getlLetter()
{
return $this->letter;
}
}

Este novo objeto ndo pode ser instanciado, é uma classe abstrata, s6 serve para herdar.

<?php
namespace WebDevBr/Orientacao/Objetos;

class A extends Letters

{
public $letter = 'A';

4

$objeto = new WebDevBr\Orientacao\Objetos\A;
echo $objeto->getletter();

Agora estamos organizando as coisas, mas s6 arranhamos a superficie, abstracdo vai além disso,
vocé também pode forcar a classe que filha (que esta herdando a Letter, que é a classe pai) a criar
métodos, por exemplo:

O N O O & W N~

e
W N~ O

0 N O O & W N =~

B | s sy s
O© 00 1 O O b O N~ O O

Introducéio 8

<?php

namespace WebDevBr/Orientacao/Objetos;

abstract class Letters

{
public function getlLetter()
{
return $this->letter;
}
public function setlLetter($letter);
}

Quando eu for criar uma classe ela deve, obrigatériamente, implementar um método setlLet-
ter($letter).

<?php
namespace WebDevBr/Orientacao/Objetos;

class Alphabet extends Letters

{
protected $letter;
public function setlLetter($letter)
{
if (!preg_match('*[a-Z]{1}$"', $letter))
thown new Exception('Isso ndo é uma letra');
$this->letter = $letter;
}
}

$objeto = new WebDevBr\Orientacao\Objetos\Alphabet;
$objeto->setletter('A");
echo $objeto->getletter();

Essa pratica é um padrdo de projeto chamado de Template Method, que informa a estrutura de
uma classe enquanto implementa métodos, quando nio implementamos métodos (uma inter face)
chamamos Strategy, claro, € uma explicagao superficial.

Introducéio 9

Encapsulamento

Na verdade eu gosto da definicdo da Wikipedia, mais claro que isso...

Encapsulamento vem de encapsular, que em programacao orientada a objetos significa
juntar o programa em partes, o mais isoladas possivel. A ideia é tornar o software mais
flexivel, facil de modificar e de criar novas implementagdes.

Além disso também podemos citar a visibilidade dos métodos e atributos, que sao 3.

« public: Pode ser acessado de qualquer lugar, é o valor padrao
« private: SO pode ser acessado dentro do objeto dono do atributo/método

+ protected: Como o private, mas também pode ser acessado a partir de objetos filhos (que
herdaram a classe)

Polimorfismo

Segundo o Google a palavra polimorfismo quer dizer.
Qualidade ou estado de ser capaz de assumir diferentes formas.
Segundo a Wikipedia.

Na programacao orientada a objetos, o polimorfismo permite que referéncias de tipos
de classes mais abstratas representem o comportamento das classes concretas que
referenciam. Assim, é possivel tratar varios tipos de maneira homogénea (através da
interface do tipo mais abstrato). O termo polimorfismo é originario do grego e significa
“muitas formas” (poli = muitas, morphos = formas). O polimorfismo é caracterizado
quando duas ou mais classes distintas tem métodos de mesmo nome, de forma que
uma func¢do possa utilizar um objeto de qualquer uma das classes polimoérficas, sem
necessidade de tratar de forma diferenciada conforme a classe do objeto. Uma das
formas de implementar o polimorfismo é através de uma classe abstrata, cujos métodos
sdo declarados mas ndo sdo definidos, e através de classes que herdam os métodos desta
classe abstrata.

Para mais informacoes indico a leitura direta na Wikipedia, https://pt.wikipedia.org/wiki/Polimorfismo®.

®https://pt.wikipedia.org/wiki/Polimorfismo

https://pt.wikipedia.org/wiki/Polimorfismo
https://pt.wikipedia.org/wiki/Polimorfismo

Introducéio 10

Continuar aprendendo

Aqui é s6 arranhei a superficie, existem muito mais além, tente pesquisar mais sobre o assunto ou
ver o curso de PHP Orientado do WebDevBr, vai te dar um panorama mais pratico.

Além disso é interessante que vocé pesquise sobre SOLID e Object Calisthenics, o primeiro sao
praticas que vao organizar sua aplicacdo de forma a poder crescer sem dificuldades, enquanto que
o segundo sdo exercicios que e ajudaram a escrever codigos mais bonitos, claro que sdo definigoes
genéricas.

O que é MVC

Praticas modernas do PHP exigem estudo e preparagao, e o padrdao de projeto que merece muita
atencgdo é o MVC. Muita gente conhece este padrao através dos frameworks (isso ndo é um problema,
eu mesmo estou neste grupo), mas ir a fundo € essencial para evitar erros e falar coisas como:

Seu MVC esta errado, o controller estd maior que o model.

Este é um erro de definigdo ja que em nenhum lugar esta escrito que a quantidade de linhas define
o padrao MVC, mas vamos entender isto melhor?

Model

Model é onde fica a logica da aplicagao. Sé isso.

Vai disparar um e-mail? Validar um formulério? Enviar ou receber dados do banco? Néo importa.
A model deve saber como executar as tarefas mais diversa, mas nao precisa saber quando deve ser
feito, nem como mostrar estes dados.

View

View exibe os dados. Sé isso.

View nao é s6 o HTML, mas qualquer tipo de retorno de dados, como PDF, Json, XML, o retorno
dos dados do servidor RESTFull, os tokens de autenticacdo OAuth2, entre outro. Qualquer retorno
de dados para uma interface qualquer (o navegador, por exemplo) é responsabilidade da view. A
view deve saber renderizar os dados corretamente, mas ndo precisa saber como obté-los ou quando
renderiza-los.

Introducéio 11

Controller

O controller diz quando as coisas devem acontecer. S isso.

E usado para intermediar a model e a view de uma camada. Por exemplo, para pegar dados da
model (guardados em um banco) e exibir na view (em uma pagina HTML), ou pegar os dados de um
formulario (view) e enviar para alguém (model). Também ¢é responsabilidade do controller cuidar
das requisi¢des (request e response) e isso também inclui os famosos middlewares (Laravel, Slim
Framework, Express, Ruby on Rails, etc.). O controller nao precisa saber como obter os dados nem
como exibi-los, s6 quando fazer isso.

O que é um framework

Um Framework ou arcabougo conceitual ¢ um conjunto de conceitos usado para resolver
um problema de um dominio especifico. Framework conceitual nao se trata de um
software executavel, mas sim de um modelo de dados para um dominio. - Wikipedia

Em outras palavras um framework é uma estrutura base para se comecar um projeto, a grande
diferenca entre framework e biblioteca é que o framework vai ditar a organizagio/fluxo da aplicacao.
E comum ver a comparacio no Javascript, mais especificamente no famoso embate Angular]s x
Jquery, sendo que o Angular]s ja te ajuda com a estrutura do seu projeto, enquanto o Jquery (que é
usado internamente pelo Angular]s) apenas te da as ferramentas para serem usadas, vocé tem que
se organizar.

Framework Full-Stack VS Micro frameworks

A maioria dos frameworks atuais sio divididos em duas subclasses, os micro e os full-stack.

Micro frameworks sdo focados em resolver um unico problema, como é o caso do Silex, Slim
Framework e Lumen (este ultimo baseado no Laravel), e muitas vezes so te disponibilizam uma
camada de controller e view (muita vezes esta view é simples, sem muitos recursos), se vocé quer
uma camada de model, emails, logs ou outros recursos tera que instalar a parte.

Frameworks full-stack sdo os caras mais completos e incrementados, eles tentam te trazer todas
as ferramentas e resolver todos os problemas. E o caso do Laravel, CakePHP, Zend Framework,
Symfony e tantos outros por ai.

E dificil definir quem é melhor ou pior, micro frameworks trazem uma visdo simplista, vocé tem
o minimo possivel e se mantém usando apenas o necessario, ndo preciso falar das vantagens dos
frameworks full-stack, afinal, se vocé esta lendo este livro é porque ja tomou sua decisdo.

Introducéio 12

O que vamos desenvolver?

Durante o curso vamos criar uma loja virtual, vou chama-la de L-Commerce (0 nome esta aberto a
sugestoes, rsrs). Vamos criar uma administracao, listagem de produtos, organizar por categorias, um
carrinho de compras e até uma integracao com PagSeguro e Correios.

Para isso vamos precisar criar uma area de administragao protegida com senha, cadastro de usuario,
produtos e categorias, relacionamento e no final teremos também toda a parte de integracdo com os
servicos externos (PagSeguro e Correios), muita coisa pra mexer em!

Vamos por a mdo na massa?

Aonde conseguir ajuda?

Estes sdo alguns locais que vocé vai querer visitar.

http://laravel.com/docs/5.1” - Documentacao oficial (procure sempre aqui primeiro)

http://laravel-docs.artesaos.org/® - Documentacéo traduzida

https://www.facebook.com/groups/laravelbrasil/® - Slack da comunidade Laravel Brasil

http://slack laravel.com.br/** - Comunidade no Facebook

Vocé também pode entrar em contato comigo através de um dos canais de comunicacédo divulgados
no capitulo anterior.

Projeto final

Todo o cddigo do projeto ja finalizado pode ser baixado em https://github.com/erikfig/Curso-de-
Laravel-5.1"*.

"http://laravel.com/docs/5.1
®http://laravel-docs.artesaos.org/
*https://www.facebook.com/groups/laravelbrasil/
http://slack laravel.com.br/
https://github.com/erikfig/Curso-de-Laravel-5.1

http://laravel.com/docs/5.1
http://laravel-docs.artesaos.org/
https://www.facebook.com/groups/laravelbrasil/
http://slack.laravel.com.br/
https://github.com/erikfig/Curso-de-Laravel-5.1
https://github.com/erikfig/Curso-de-Laravel-5.1
http://laravel.com/docs/5.1
http://laravel-docs.artesaos.org/
https://www.facebook.com/groups/laravelbrasil/
http://slack.laravel.com.br/
https://github.com/erikfig/Curso-de-Laravel-5.1

Preparando o Laravel

Instalando o Laravel 5

Antes de instalar o Laravel 5 tenha certeza de estar tudo de acordo com o capitulo 1 > Ambiente de
desenvolvimento.

Para comecar vamos criar um projeto do Laravel usando o Composer
composer create-project --prefer-dist laravel/laravel path

O path ali no final é o diretério que sera instalado o Laravel 5, caso ja esteja no diretdrio destino
tente usar ./ (no Linux):

composer create-project --prefer-dist laravel/laravel ./

Caso nao informe o path um diretério chamado laravel sera criado.

O comando create-project baixa um componente (o esqueleto do Laravel neste caso) como seria
comogit clone ou o simples baixar e descompactar e e seguida faz um composer install, trazendo
assim as dependéncias do esqueleto (o Laravel, neste caso).

Rodando o PHP Built-In Server com Artisan
Para usar o PHP Built-in Server do PHP é muito simples, na raiz do projeto execute:

php artisan serve

O Laravel vai, na verdade, executar o arquivo em *vendor/laravel/framework/src/Illuminate/Foun-
dation/Console/ServeCommando.php, e disparar o método fire(), que roda algo como:

php -S localhost:8000 -t public /server.php

Ou seja, é um atalho para o PHP Built-In Server.

Ao abrir o navegador com o endereco http://localhost:8000 (informado no terminal apds rodar o php
artisan serve) vocé deve se deparar com a tela de boas vindas do Laravel 5.

Preparando o Laravel 14

Permissoes de diretorios

Pode ser que apds isso vocé ainda receba mensagens de erro relacionadas a permissao, acontece que
o Laravel 5 precisa de permissao de leitura e escrita nos diretorios:

- storage
« bootstrap/cache

Na verdade é bem simples, na maioria dos sistemas operacionais basta rodar os comandos abaixo
(respeitando o separador de diretdrios, por exemplo, no Windows é barra invertida [\]).

chmod @777 -R storage
chmod @777 -R bootstrap/cache

Existem outras formas de se fazer isso, o importante é que ao final do processo vocé tenha permissao
de leitura e escrita em ambos os diretérios recursivamente.

Configuracoes iniciais

O Laravel 5 usa arquivos com a extensao .env para setar as configuragdes internas da aplicagdo como
banco de dados, cache, email e a chave de seguranca (entre outras), isso é possivel gragas a biblioteca
DotEnv'? criado por Vance Lucas.

Como usamos o Composer, o arquivo .env foi criado automaticamente com base no .env.example,
ambos na raiz do projeto, e agora podemos apenas editar os dados dentro dele, note que este arquivo
nao deve ser enviado para o servidor de producdo, vocé vai criar um novo 14, entdo se vocé usa Git
nao esqueca de adicionar ao seu .gitignore ou excluir da fila do FTP.

A chave da aplicacdo ja deve ter sido gerado pelo Composer, podemos consultar no item APP_KEY
do seu arquivo .env, se ndo encontrar uma string randémica formada por 32 caracteres entre letras
e numeros entdo vocé deve rodar o comando a seguir.

php artisan key:generate

Sem esse codigo unico e randémica sua aplicacio nao esta segura.

Com excec¢ao do .env, todos os arquivos de configuracdo do Laravel 5 estao dentro do diretdrio config,
e vocé pode facilmente editar qualquer um que precise 14 dentro, abra o arquivo config/app.php, por
exemplo, 14 existe as configuracdes de debug (true se a aplicagio estd em desenvolvimento e false
se esta em producao), location (idioma), timezone (horario) e varias outras, vamos ver como preceder
caso queira configurar algo, por exemplo, o banco de dados.

https://github.com/vlucas/phpdoteny

https://github.com/vlucas/phpdotenv
https://github.com/vlucas/phpdotenv

, O © 0N O O b W N =~ sw N -

RGN

Preparando o Laravel 15

Configurando o banco de dados

Ainda dentro do arquivo .env vamos encontrar 4 linhas, parecidas com estas:

DB_HOST=dev.local
DB_DATABASE=curso_laravel
DB_USERNAME=root
DB_PASSWORD=123

Acredito que dispensa maiores detalhes, mas vou explicar mesmo assim.

E ai que vocé vai inserir as informacdes para acesso ao banco de dados, provavelmente vocé ja tem
estes dados e é capaz de criar um banco de dados vazio por conta propria, de qualquer forma se
precisar de ajuda nesta etapa pode solicite ajuda.

Aqui uma descri¢do do que cada quer dier:

« DB_HOST: O servidor de banco de dados

DB_DATABASE: O nome do seu banco

« DB _USERNAME: O usuério de acesso

DB_PASSWORD: A senha (pode ficar em branco se vocé nao setou uma senha)

Apbs informar os dados no arquivo .env nao esqueca de apache o cache de configuracoes do banco
com o comando abaixo.

php artisan config:clear

Vocé também pode informar estes dados no arquivo config/database.php, a parte que vamos alterar
deve se parecer com:

/* .. cédigo anterior */

connections' => [

'sqlite' => [
'driver’ => 'sqlite',
'database' => storage_path('database.sqglite'),
"prefix’ = ',

] !

"mysql' => |
'driver’ => 'mysql',

Preparando o Laravel 16

12 "host' => env('DB_HOST', 'localhost'),
13 '"database' => env('DB_DATABASE', 'forge'),
14 'username' => env('DB_USERNAME', 'forge'),
15 'password' => env('DB_PASSWORD', ''),

16 'charset’ => 'utf8"',

17 'collation' => 'utf8_unicode_ci',

18 'prefix’ = ',

19 'strict’ => false,

20 1,

21 /% .. coédigo posterior */

Note que em vez de informar o servidor (DB_HOST), banco de dados (DB_DATABASE), usuario
(DB_USERNAME) e senha (DB_PASSWORD) o arquivo chama o método env() com o nome da
configuracdo usada no arquivo .env como primeiro pardmetro e um valor padrdo como segundo
parametro. Ele esta resgatando os dados do arquivo .env e caso ndo encontre o segundo parametro
€ o que sera usado.

Caso tenha alguma dificuldade em usar o .env ainda podemos substituir o método pelo valor final,
firaria assim:

1 /% .. cédigo anterior */
2 ‘'connections' => |
3
4 'sqlite' => |
) 'driver’ => 'sqlite’',
6 'database' => storage_path('database.sqlite'),
7 'prefix’ = ',
8 1,
9
10 "mysql' => [
11 'driver’ => 'mysql',
12 "host' => 'dev.local',
13 'database'’ => 'curso_laravel',
14 'username' => 'root',
15 '"password' => '123',
16 'charset’ => 'utf8"',
17 'collation' => 'utf8_unicode_ci',
18 'prefix’ = ',
19 'strict’ => false,
20 1,
21 /% .. coédigo posterior */

Logo vamos descobrir se as configuracdes estao corretas.

Preparando o Laravel 17

Conhecendo o banco de dados do nosso projeto

O nosso projeto tera as seguintes tabelas:

« categories - Listagem de categorias
— id - indice unico
— title - titulo da categoria
— created_at - data de criacdo
— updated_at - data de atualizacao
« products - Listagem de produtos
— id - indice Unico
— title - titulo do produto
— body - descri¢do do produto
— value - valor do produto
— qtd - quantidade disponivel do produto
- url - url amigavel do produto
— created_at - data de criacdo
— updated_at - data de atualizagao
« category_product - Relaciona uma categoria com um produto
— id - indice unico
- product_id - O produto
- category_id - A categoria
« users - Gerencia os usuario (ja vai ser criado pelo Laravel)
— id - indice unico
— name - nome do usuario
— email - email do usuario
— password - senha do usuério
— created_at - data de criacdo
— updated_at - data de atualizacdo
« password_resets - Gerencia os resets de senha (ja vai ser criado pelo Laravel)
— email - email da conta que tera a senha resetada
— token - cddigo para confirmar a autenticidade da solicitacdo
— created_at - data de criacdo
- updated_at - data de atualizacéo

Notou que existem alguns que se repetem, vamos entende-los
O campo id
O campo id ¢é a identificacdo unica do registro em questao, vamos usar muito ele na administracdo

do site para abrir um registro ou para relacionar os produtos com as categorias, ele sera preenchido
automaticamente pelo banco de dados com um niimero que néo vai se repetir.

Preparando o Laravel 18

O campo created_at

O campo created_at é preenchido automaticamente pelo Laravel armazenando a data e hora da
criacdo do registro em questao.

O campo updated_at

O campo updated_at é preenchido automaticamente pelo Laravel armazenando a data e hora que o
registro foi atualizado.

Criando arquivos de Migration

Uma das primeiras coisas que faco quando comeco a trabalhar em um novo projeto, independente
do framework ou linguagem que vou usar, ¢ modelar o banco de dados (acho que todo mundo) e de
alguma forma passar a responsabilidade de criar e manter todas as tabelas e registros ao PHP. Isso
facilita o deploy e eu nédo tenho que ficar abrindo o banco de dados para fazer alteracoes, esse é o
processo de migracdo oumigration.

O migration cria uma linha do tempo com os detalhes de criagio e posteriores alteracoes e evolugoes
do seu banco de dados, assim vocé pode voltar atraz ou até recriar todo o banco com poucos
comandos, é muito pratico.

O Laravel 5 ja vem com duas tabelas prontas para serem criadas, a de usuarios e a de reset de senhas,
os arquivos ficam dentro de /database/migrations. Para criar as tabelas que o Laravel traz basta abrir
o diretério raiz do projeto no terminal e rodar o comando a seguir:

php artisan migrate

Claro, vocé ja tem que ter uma tabela criada e o acesso ao banco de dados configurado (no capitulo
anterior) ou vai receber um erro.

Até entdo sem muitas novidades, mas como criar uma nova tabela? Simples, primeiro precisamos
criar um novo arquivo de migration, vamos criar uma tabela para nossos produtos, vou chamar de
products.

php artisan make:migration products
O products foi o nome que eu dei ao arquivo, ele ja deve estar junto com os que ja existiam.

Dentro do arquivo vocé vai ter dois métodos, um chamado up() e outro chamado down(), o primeiro
executa alteracoes, o segundo desfaz, veja como é simples:

« up() - cria a tabela
« down() - remove a tabela

© 00 39 O Ol b W N =

, O O 0 N O O b W N =

[EEY

Preparando o Laravel 19

Outro exemplo seria o comando up() criar um campo, o down() remove o campo, é simples.

Se vocé olhar o arquivo que cria a tabela users vai matar de primeira como deve fazer com a
products, mas vou ajudar. Isto vai dentro do método up();

Schema: :create('products', function (Blueprint $table) {
$table->increments('id');
$table->string('title");
$table->longText('body');
$table->decimal('value', 11, 2);
$table->integer('qtd");
$table->string('url')->unique();
$table->timestamps();

1)

E este dentro do down();
Schema: :drop('products');

Na hora de criar os campos usei alguns métodos especificos para cada tipo, por exemplo, para um
varchar usei string(), para um text usei longText(), para ver a lista completa de uma olhada
aqui: http://laravel.com/docs/5.1/migrations#writing-migrations*’.

O increments() cria uma chave primaria e o timestamps() cria as tabelas created_at e updated_at.
Foi facil né, rode o php artisan migrate novamente pra ver sua nova tabela no banco de dados.

Aqui os outros dois arquivos de migration para as tabelas categories e category_product, useo o
comando php artisan make:migration [nome_do_arquivo_com_caracteres_minusculos_e_un-
derlines].

<?php
//categories

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class Categories extends Migration

{
J**

* Run the migrations.

http://laravel.com/docs/5.1/migrations#writing-migrations

http://laravel.com/docs/5.1/migrations#writing-migrations
http://laravel.com/docs/5.1/migrations#writing-migrations

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Preparando o Laravel

*

* @return void

*/
public function up()
{

Schema: :create('categories', function (Blueprint $table) {
$table->increments('id');
$table->string('title');
$table->timestamps();

1)

Vet
* Reverse the migrations.
*

* @return void
*/
public function down()

{

Schema: :drop('categories');

<?php

//category_product

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CategoryProduct extends Migration

{
Ve
* Run the migrations.
*
* @return void
*/
public function up()
{
Schema: :create('category_product', function (Blueprint $table) {
$table->increments('id");
$table->string('category_id');

20

54
55
56
o7
58
959
60
61
62
63
64
65
66
67
68

W N O O b W N =~

I U
B W N0 O

Preparando o Laravel 21

$table->string('product_id');
$table->timestamps();
1)

Rk
* Reverse the migrations.
*

* @return void
*/
public function down()

{
Schema: :drop('category_product');

Nao esqueca de atualizar o banco com o comando php artisan migrate.

Criado um arquivo de Seed

E que tal se inserirmos um usuario inicial, assim quando formos instalar o projeto no servidor bastara
rodar uma linha de comando e pronto, estaremos aptos a logar no sistema.

Va até o arquivo em database/seeds/DatabaseSeeder.php e adicione esta classe no fim do arquivo.

class UserTableSeeder extends Seeder

public function run()

{
DB: :table('users')->delete();
\App\User: :create(/
'name'=>"Erik Figueiredo',
'email '=>'"erik.figueiredo@gmail.com',
'password'=>bcrypt('123456"'),
1);
}

E dentro do método run() da classe DatabaseSeeder:

Preparando o Laravel 22
$this->call('UserTableSeeder');

Precisa explicar? Ta bom, explico, a classe UserTableSeeder é responsavel por inserir um registro
usando o Eloquent (sim, o User: :create() é um comando do Eloquent para inserir registros), o
DatabaseSeeder::run() carrega e executa a classe, j4 0 comando DB: :table('users')->delete();
remove todos os dados da tabela.

Nao se preocupe em entender isso agora, vamos nos aprofundar bem mais para frente.

Para efetivar o registro no banco basta rodar o comando:
php artisan db:seed

Prontinho, simples!

00 I O O b W N =~

N U
O O b WD~ O

Model, View e Controller

Rotas

As rotas definem o que acontece na sua aplicacdo quando determinada URL é acessada, existem
muitas formas de trabalhar com rotas no Laravel e isso é incrivel se vocé quer liberdade e
estabilidade, quem nao quer?

Um bom exemplo para comegarmos é aquela pagina inicial do Laravel, sabe, aquela tela que vocé
viu no capitulo anterior. Abra o arquivo em app/Http/routes.php, este arquivo guarda todas as rotas
da nossa aplicagao, ele deve se parecer com este exemplo a seguir, tomei a liberdade de traduzir os
comentarios.

<?php

| Aqui esta onde vocé pode registra todas as rotas para uma aplicagdo
| E uma brisa. Simplesmente diga ao Laraval a URI que deveria responder
| e dar-lhe o controller para chamar quando a URI for solicitada

/
*/

Route::get('/', function () {
return view('welcome');

1)

Estas trés linhas simplesmente informam que ao acessar a “URL raiz” (‘/’) o Laravel deve renderizar
a view welcome, esta view deve estar em resources/views/welcome.blade.php, o Laravel é inteligente
o suficiente para encontrar um arquivo de view, apenas devemos respeitarmos as seguintes regras.

« Um arquivo de view deve estar dentro de resources/views
« um arquivo de view deve terminar com .php ou .blade.php

Vou explicar mais tarde a diferenca entre arquivos .blade.php e .php, por hora fique a vontade para
renomear o arquivo de welcome.blade.php para welcome.php e ver que ndo vai mudar nada.

Model, View e Controller 24

Parametros de URL

Vamos brincar mais um pouco? Que tal um Hello World? Adicione esta rota no final do arquivo
routes.php.

Route: :get('/hello', function () {
return 'Hello World!';

1)

Agora acesse http://localhost:8000/hello e veja seu texto aparecer na tela (ndo esqueca de iniciar o
servidor). O Laravel tem um sistema de rotas muito bem elaborado e vocé pode fazer muito s6 com
ele.

Route: :get('/hello/{name}', function ($name) {
return 'Hello ' . $name . '!';

});

Agora tente acessar a url hello/seunomeaqui, note que vocé pode adicionar esta nova rota ou
substituir a anterior, s6 que se substituir ndo vai mais ter acesso a /hello somente esta nova,
substitua. Temos uma url variavel com um parametro obrigatério, legal, mas agora vamos tornar
esse parametro opcional, assim a URL /hello voltara a funcionar.

Route: :get('/hello/{name?}', function ($name = 'World') {
return 'Hello ' . $name . '!';

1)

Agora vocé tem uma rota com parametro opcional e um valor padrédo caso $name nao seja enviado.

Retringindo por verbos HTTP

Vocé notou que até agora usamos Route: :get () para especificar uma rota? Esse get() se refere ao
verbo GET, entdo é meio 6bvio que temos também um post() para o verbo POST, correto?

Tente trocar uma das urls que criamos para POST e acesse, por exemplo:

Route: :post('/hello/{name?}', function ($name = 'World') {

return 'Hello . $name . "1,

});

Vocé deve receber um erro que, entre outras coisas, informa o erro MethodNotAllowedHttpEx-
ception in RouteCollection.php line 201, isso quer dizer que funcionou, vocé s6 pode acessar a url
através do método POST, caso contrario recebera um erro de permissao, isso é interessante porque
limita o acesso a um recurso apenas para os versos especificados, ou seja, ndo deixa margem para
requisicdes inesperadas e maliciosas, mas como fazer para liberar o acesso a uma rota em dois verbos
HTTP ao mesmo tempo? Criamos duas rotas? Nao, para estes momentos usamos o match().

=N O O & W N =

W N~

Model, View e Controller 25

Route: :match(/['get', 'post'], '/hello/{name?}', function ($name = 'World') {
return 'Hello ' . $name . '!';

});

Em vez de passarmos a rota no primeiro parametro, passamos no segundo, e no primeiro informamos
um array com os verbos que queremos dar acesso.

Prontinho, agora que vocé entendeu essa parte quero apenas reforgar que vocé também tem acesso
a outros verbos HTTP, como PUT e DELETE, nédo conhece? Passou da hora de procurar saber mais
sobre isso entao.

Route: :put('foo/bar', function () {
/7
1)

Route: :delete(' foo/bar', function () {
//
1)

Brincando com Banco de dados

Que tal brincarmos um pouco com banco de dados? Lembra aquele usuario que cadastramos com
os seeds do Laravel? Vamos pegar ele do banco e imprimir na tela?

Route: :get('/all_users', function () {
return DB::select('SELECT * FROM users WHERE 1=1');
1);

Note que o resultado foi automaticamente convertido para uma saida json, o Laravel é magico,
adicione um .json ao final da rota, para diferenciar do exemplo seguinte. Nao se preocupe em
entender o DB::select() agora, cada coisa em seu tempo.

Para listar estes dados em um HTML, ou seja, uma lista com um titulo.

Route::get('/all_users', function () {
$users = DB::select('SELECT * FROM users WHERE 1=1");
return view ('users.aprendendo_rotas', ['users'=>$users]/);

1)

Sempre que acessarmos um arquivo de view no Laravel que deveria estar dentro de um diretdrio
usamos o ponto como caracter de separacdo, entdo nao esqueca de criar um arquivo users/apren-
dendo_rotas.php dentro de resources/views, com o codigo abaixo.

O O b W N -

Model, View e Controller 26

<h1>Users</h1>

<?php foreach ($users as Puser): 7>
<1i><?php echo $user->name; ?></1i>
<?php endforeach; 7>

Agora quando carregarmos a url no navegador vocé deve receber um HTML mais elaborado e com
o Unico usuario cadastrado que temos listado, com o tempo teriamos mais usuarios e mais registros
a exibir.

Note que a variavel $users foi compartilhada a partir da rota na view, isso gracas ao segundo
parametro do método view(), ele informa o nome da variavel e o valor que ela devera ter, se vocé
quiser que a variavel tenha o nome $data na view, o método seria criado conforme a seguir.

return view ('users.aprendendo_rotas', ['data'=>$users]);
E o foreach() na view ficaria assim.
<?php foreach ($data as $user): 7>

Simples na verdade.

Carregando controllers e actions

Mas se vocé criar uma aplicacao desta forma, rapidamente seu routes . php ficara gigantesco e dificil
de manter, entdo que tal delegar a tarefa de requisitar e retornar dados para um controller, afinal é
pra isso que ele serve.

Route::get('/all_users', ['uses'=>'UsersController@allUsers']);

Prontinho, agora eu informei que vou usar o controller UsersController e a action allUsers() para
executar a tarefa em questdo.

Mas ainda ndo temos um controller, entdo se vocé testar a rota agora vai receber uma mensagem
informando que o controller ndo existe, assim: Class AppHttpControllersUsersController does not
exist.

Nomeando rotas

Sempre que precisarmos fazer referéncia a uma rota qualquer, seja em links na view ou redirecio-
namentos no controller é sempre uma boa ideia usar o nome da rota em vez da URL em si, este deve
ser unico e bem pensado, assim se sua rota mudar vocé ainda mantém o link ativo.

Para nomear uma rota apenas informe o parametro as no array de configuracao.

N O O & W N -

© 00 39 O O b W N =~

Model, View e Controller 27

Route: :get('/all_users', ['uses'=>'UsersController@allUsers', 'as'=>'users.all_u\
sers']);

Neste caso o ponto ndo tem qualquer significado maior, apenas separa os nomes.

Criando um controller

Agora que vocé ja tem sua rota vamos criar um controller, acesse app/Http/Controllers e crie um
arquivo chamado UsersController.php e crie uma classe padrao do PHP, como ja conhecemos:

<?php
namespace App\Http\Controllers;

class UsersController

{
}

Todo controller deve hedar Controller, que por sua vez herda de BaseController, o resultado segue a
baixo.

<?php
namespace App\Http\Controllers;
use App\Http\Controllers\Controller;

use class UsersController extends Controller;

{
}

E por fim nosso action allUsers():

O N O O & W N~

(RN
N O ©

© 00 39 O Ol b W N =~

Model, View e Controller 28

<?php

namespace App\Http\Controllers;

class UsersController extends Controller

{
public function allUsers()
{
$users = \DB::select('SELECT * FROM users WHERE 1=1"');
return view ('users.aprendendo_rotas', ['users'=>$users]);
}
}

Ja separamos melhor as camadas, se acessar agora a rota /all_usersvai receber o mesmo resultado que
antes, mas com uma estrutura mair organizada e passiva de crescer sem prejudicar sua organizacao.

Criando um controller com artisan

Mas o Laravel poderia ter criado este controller pra gente e ainda preparado uma estrutura de
actions muito interessante e que vamos usar mais pra frente, apague o UsersController e vamos
fazer novamente.

php artisan make:controller UsersController

Se, por qualquer motivo, vocé ndo quiser que o controller venha com todos este métodos pode usar o
parametro —plain e criar um controller vazio, faga alguns testes, o comando completo ficaria assim:

php artisan make:controller UsersController --plain
Adicione o método allUsers() no nosso novo controller.

<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\Controller;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

Model, View e Controller

class UsersController extends Controller

{

public function allUsers()

['users'=>%users]);

{
$users = \DB::select('SELECT * FROM users WHERE 1=1"');
return view ('users.aprendendo_rotas’,
}
/**

* Mostra uma lista de registros
*

* @return Response
*/
public function index()

{
/7

Rk
* Exibe um formulario de criag¢do de registro
*

* @return Response

*/
public function create()
{
/7
}
K
* Armazena um novo registro
*

* @return Response
*/
public function store()

{
//

Rk
* Exibe um registro especifico
*

29

52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Model, View e Controller

public function show($id)

{

* @param

int $id

* @return Response

*/

J Rk

public function edit($id)

{

* Exibe um formulario de edig¢do de registros

* %

*/

J k¥

public function update($id)

{

* Atualiza um registro especifico

*

* @param

/7

@param

//

int $id

@return Response

int $id

* @return Response

*/

J k¥

public function destroy($id)

{

* Remove um registro especifico

* @param

/7

int $id

* @return Response

*/

/7

30

<N O O B W N =~

Model, View e Controller 31

Consultando o banco de dados

Vocé deve estar muito interessado naquela classe DB que usamos para buscar dados do banco, tenho
certeza que sim, pois bem, vamos ver a fundo o que podemos fazer com ela?

O objeto DB ¢ a forma mais simples que temos para executar queries Sql no Laravel 5, veja a seguir
um exemplo com protecdo contra injecdo de dados.

$users = \DB::select('SELECT * FROM users WHERE id=:id', ['id'=>1]);

Este codigo deve retornar o usuario de id 1 (provavelmente o que vocé ja tem cadastrado), o que
ele fez foi substituir o valor de :id pelo que informei no array, isso evita o processo de Sql Injection
usando o PDO para escrever o valor de forma segura.

Vocé também poderia fazer desta forma:
$users = \DB::select('SELECT * FROM users WHERE id=?', [1]);

Agora ele vai trocar o ? por 1, o primeiro exemplo ¢ chamado de named binding, ou binding nomeado

€ o que eu prefiro usar no meu dia a dia (quando escrevo Sql, ou seja, quase nunca em uma aplicacdo
PHP).

No6s usamos o método select() para consultar os dados, mas ainda temos o insert(), o update(), o
delete() e o statement().

DB::insert('insert into users (id, name) values (?, ?)', [1, 'Dayle']);

$affected = DB::update('update users set votes = 100 where name = ?', ['John']);

!

$deleted = DB::delete('delete from users');

DB: :statement('drop table users');

Os métodos sao auto-explicativos, ndo precisa de muitos detalhes pra vocé entender, o statement()
serve para executar queries diversas como remover uma tabela (drop table), criar um banco de
dados (criate database), enfim.

Ainda temos Ouvintes de consulta, transacoes e multiplas conexoes ao banco de dados na documen-
tacdo, o objeto DB do Laravel é bem completo e abstrai muito bem o PDO. Para ir mais a fundo
consulte http://laravel.com/docs/5.1/database*.

“http://laravel.com/docs/5.1/database

http://laravel.com/docs/5.1/database
http://laravel.com/docs/5.1/database

0 = O O b W N =~

(RN
N O O

Model, View e Controller 32

Query builder

Eu tenho o costume de passar a maior parte da responsabilidade possivel para o PHP em se tratando
de banco de dados, ja disse isso antes, e uso muito Query Builders, com eles vocé constroi sql usando
métodos e o Laravel se vira pra gerar o comando em string, ja sabendo que existem muitas diferencas
na escrita de Sql entre diferentes bancos de dados, acredito ser uma pratica muito aceitavel.

Lembra desta linha:
$users = \DB::select('SELECT * FROM users WHERE id=:id', ['id'=>1]);

Vocé consegue o mesmo resultado com o coédigo a baixo, mas agora o Laravel se encarrega de criar
o sql correto para o seu banco de dados, vocé até pode trocar o banco quando quiser, vai continuar
funcionando.

$user = DB::table('users')->where('id', 1)->get();

Em vez do get() eu poderia usar o first() para trazer o primeiro resultado, ou o chunk(100, Closure)
para trazer partes de uma consulta por vez (100 registros de cada vez, por exemplo), ou o lists() para
gerar listas, ou o count() (e os outros agregadores, como max(), avg(), enfim).

Veja como ficaria nosso exemplo anterior usando query builder.

DB::table('users')->insert(
'id' = 1,
'name’ => 'Dayle’

);

$affected = DB::table('users')
->where('name', 'John')
->update(['votes' => 100]);

$deleted = DB::table('users')->delete();

DB: :statement('drop table users');

Ainda temos varios outros exemplos tteis que poderiamos trabalhar aqui, mas vamos fazer isso
durante o desenvolvimento do nosso projeto principal, vamos nos focar.

Criando um model

A minha forma favorita de trabalhar com banco de dados é com models, o resultado é um controller
mais limpo ao tempo que a liberdade é muito grande, ja que toda model retorna um query builder
para usarmos, por exemplo, ambas as linhas abaixo fazem a mesma coisa, mas a segunda foi escrita
usando a model User que ja vem no Laravel.

[N

© © 00 N O O b W N =~

Model, View e Controller 33

DB::table('users')->delete();
\App\User: :delete();

Eu agora tenho um controle maior da minha aplicagéo, ja que todas as configuracoes da tabela users
esta dentro do model App\User.

No Laravel 5 os models sdo criados na raiz do diretorio app, nada impede de vocé colocar seus models
em um diretorio personalizado, talvez em app/Http/Models ou até app/Models, desde que respeite o
namespace da classe, eu vou manter no formato padrao, ou seja, no diretdrio app.

Vamos criar nosso segundo model! Opa, segundo? Sim, o Laravel ja traz o model User criado, menos
trabalho pra gente, vamos criar outro, que tal o Product, entdo crie uma classe em app/Product.php,
ela deve ficar assim:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;
class Product extends Model

{
//

S6 que mais uma vez poderiamos ter usado o Artisan.
php artisan make:model Product

O resultado seria exatamente o mesmo.

A primeira coisa a se fazer é informar qual tabela do banco de dados este model deve ser responsavel
(sim, teremos um model por tabela), para fazer isso usamos o atributo protegido $table, sugestivo,
nao.

protected $table = 'products';

Também podemos informar quais campos podem ser criados em massa, ou seja, atribuidos de uma
vez, sdo dois atributos agora, o $fillable para permitir as insercdes e o guarded para proibir.

© 00 9 O O b W N =

0 N O O & W N =~

(AN
N =~ O O

Model, View e Controller 34

Vers
* Permitir alteragbes em massa
*/

protected $fillable = ['title', 'body', 'value',6 'qtd'];

Vers
* Proibir alteragbes em massa
*/

protected $guarded = ['url'];

Eu mostrei o atributo $guarded apenas para ilustrar, na verdade o url também deve ficar dentro do
$fillable, ndo esqueca de fazer essa alteragao.

Ainda temos os atributos $timestamps e $primaryKey, o primeiro indica (com true ou false) se vocé
vai usar os campos created_at e updated_at, o padrao é true, caso vocé nao tenha criado estes
campos vai precisar informar false. O segundo atributo ($primaryKey) vai informar qual a chave
primaria da tabela, o padrao é id e ndo é necessario informa-lo caso esta seja a sua chave primaria.

Meu model completo ficou assim.

<?php
namespace App;
use Illuminate\Database\Eloquent\Model;

class Product extends Model

{
protected $table = 'products’;

protected $fillable = ['title', 'body', 'value', 'qtd',6 'url'];

Entidades do Eloquent

Agora que nosso model esta pronto, podemos usar o Eloquent (ORM do Laravel) para fazer as
consultas de uma forma muito mais limpa e organizada, ele vai usar a classe de model que criamos
e isso ja facilita muito. O conceito de ORM trabalha com entidades representado cada registro em
vez de simples arrays, estas entidades sdo objetos comuns e que podem ser manipulados através do
arquivo de model.

Vamos usar muito as entidades e models, ndo se preocupe em entender tudo agora.

Imagine a seguinte classe (ndo precisa criar, s6 conhecer a estrutura).

© 00 N O U b W N =

O = W N -

Model, View e Controller 35

class User

{
public $id;
public $name;
public $email;
public $password;
public $created_at;
public $updated_at;

Essa classe é uma entidade e cada atributo representa um campo na tabela, quando recuperamos
varios dados do banco teremos um array com varias entidades dentro. Simples assim.

Este é um exemplo de consulta e impressao na tela.

$user = \App\User::find(1);
echo '<h1>' . $user->title . '</hi>';

echo $user->id . '
;
echo $user->email;

Vamos avancar um pouco as coisas e comegar a criar nosso painel de administracio da loja.

CRUD

Crie o controller ProductsController com o artisan sem --plain, o comando completo:
php artisan make:controller ProductsController

O controller rescem criado tem 7 métodos, cada um com sua responsabilidade especifica, agora
vamos criar 7 rotas, uma para cada método, mas antes fa(;a as contas, como teremos um CRUD
de categorias e outro de usuérios entdo sdo 21 rotas, 3 controllers com 7 métodos cada, agora
imagine 9 ou 10 controllers, imagine 15, desanimou? Calma, calma, ndo criemos panico, o Laravel
ja implementa uma rota que cuida dessa estrutura pra gente, veja a magica, va até o routes.php e
insira um novo roteamento usando o comando abaixo.

Route: :resource('products', 'ProductsController');

Com apenas o método resource() temos acesso a 7 URLs padrao no nosso crud, todas nomeadas e
especificas a seus verbos HTTP.

verbo url action Nome da rota
GET /products index products.index
GET /products/create create products.create
POST /products store products.store
GET /products/{id} show products.show
GET /products/{id}/edit edit products.edit
PUT/PATCH /products/{id} update products.update
DELETE /products/{id} destroy products.destroy

Note a ultima coluna com os nomes da rota, vamos usar muito isso.

Estamos trabalhando com uma estrutura base para um servidor RESTful, mas também é excelente
para o que precisamos fazer e ¢é fantastico como o Laravel simplifica o nosso trabalho neste ponto,
esse formato é mais organizado, as actions acabam seguindo o Simple Principle (principio da
responsabilidade tnica) do S.O.L.LD., além de facilitar a pratica de Calisthenics Object, que dita
um nivel de identacdo em cada método, outro ponto a favor é que os nossos actions estao protegidos
com acesso a verbos HTTP especificos, além da protecao CSRF padrao do Laravel 5.

Prontinho, vamos criar as views!

0 I O O b W N =

SR) s |
<N O O WD =r OO O

CRUD 37

Criando views

Va até o diretdrios resources/views e crie os seguintes arquivos dentro de um novo diretério products
(crie caso ndo existam).

+ index.blade.php
» create.blade.php
« show.blade.php

» edit.blade.php

Listando produtos

Vamos fazer a primeira consulta com o Eloquent no nosso controller ProductsController?

Na action index() adicione estas duas linhas.

$products = Product::all();
return view ('products.index', ['products'=>$products]);

A primeira vai trazer todos os resultados da tabela users enquanto a segunda vai informar qual view
usar e enviar os dregistros para la, limpo, simples e bonito.

A view em products/index.blade.php deve ficar assim, por enquanto.

<h1>Usuarios</h1>

<table>
<thead>
<tr>
<th>id</th>
<th>title</th>
<th>actions</th>
</tr>
</thead>
<tbody>
@foreach ($products as $k=>$product)
<tr>

<th>{{ $product->id }}</th>
<th>{{ $product->name }}</th>
<th>

$product->id]) }}">view</a:

18
19
20
21
22
23
24

©O© 00 N O U b W N =

CRUD 38

$product->id]) }}">edit</a:
$product->id]) }}">remo

</th>
</tr>
@endforeach
</tbody>
</table>

Note que nenhuma tag <?php foi usada, em vez disso eu usei marcacdes do Blade. O Laravel vem
com um template engine que facilita a escrita de arquivos de view, ele se chama Blade. As duas
marcacgdes que Usamos:

« {{ string }} - E 0 mesmo que echo do PHP
+ {{ @foreach }} - E 0 mesmo que foreach() do PHP
« {{ @endforeach }} - informa aonde o @foreach termina

Além disso eu usei um método route(), aqui ja temos cédigo PHP sem Blade, este helper traduz
os nomes das rotas em urls, também temos acesso ao route() no controller, através do método
redirect(), como veremos mais a frente.

Cadastrando um produto

Para inserir um registro vamos precisar de duas actions, a create() para exibir o formulario de
cadastro e a store() para realmente incluir no banco de dados. Lembre-se que a create() sera acessada
via GET e a store() via POST, vamos criar o c6digo?

public function create()

{
return view ('products.create');
}
public function store(Request $request)
{
dd($request->all());
}

A novidade agora é o objeto Request que é instanciado na variavel $request automaticamente pelo
IoC do Laravel sem que vocé ao menos precise saber o que é um IoC, através dele podemos ter acesso
a todos os dados enviados pela requisicdo como as variaveis GET e POST, por exemplo. O dd()
significa dump and die e executa uma espécie de var_dump() seguido de um die(), neste momento é
interessante sabermos como estes dados sdo recebidos no controler para em seguida fazer algo com
eles, neste caso, persistir no banco.

Veja alguns exemplos para lidar com dados GET e POST.

O N O O & W N~

(RN
N O ©

, O O 0 9 O O b W N =

[EEY

CRUD 39

$name = $request->input('name'); // campo name enviado por qualquer verbo HTTP

$name = $request->input('name', 'Sally'); // agora com como valor padrdo 'Sally'\
caso nao seja encontrado

Ak
* Verificando se um campo foi enviado
*/
if ($request->has('name')) {
/*... fol enviado ...*/

$input = $request->all(); // retorna todos os campos em qualquer verbo HTTP

Agora que vocé esta afiado que tal construirmos um formulario para enviar estes dados, a view em
products/create.blade.php fica assim:

<h1>Cadastrar usuario</hi>»

<form action="{{ route('products.store') }}" method="POST">
<input type="hidden" name="_token" value="{{ csrf_token() }}">
Title: <input type="text" name="title">

Description: <textarea name="body"></textarea>

Value: <input type="text" name="value">

Quantity: <input type="number" name="qtd">

Url: <input type="text" name="url">

<input type="submit">
</form>

Viu o campo _token, o Laravel ja vem nativamente com protecio CSRF ativada, vocé so precisa
informar o valor do campo com o helper csrf_token() que vai retornar o hash a ser usado. CSRF
¢ um acronimo de Cross Site Request Forgery, ou Falsificagdo de Solicitagdes entre sites e consiste
em um tipo de ataque focado em enviar falsas requisicoes, ele pode ser bloqueado com um hash
aleatério que deve ser enviado em todas as requisi¢des diferentes de GET.

Ao preencher e enviar o formulario vocé deve se deparar com os dados impressos na tela, tente
remover o campo _ token e enviar, vocé vai receber um erro. Com os dados impressos na tela, vamos
persistilos no banco. Troque o contetido de store() por:

Product: :create($request->all());
return redirect()->route('products.index');

Usei nosso model para fazer um Mass Assignment, ou seja, enviar os valores todos de uma vez para
o Eloquent, esta ndo é a tnica forma de fazer isso, para quem ja trabalhou com outros ORMs vai se
sentir mais em casa com este exemplo a seguir, embora o anterior traga 6bvios beneficios.

S © 00 I O O b W N =

[N

O = W N =

CRUD 40

$product = new Product;

$product->title = $request->input('title');
$product->value = $request->input('value');
$product->qtd = $request->input('qtd');

$product->url = $request->input('url');
$product->body = $request->input('body');

$product->save();
return redirect()->route('products.index');

O Product::create() faz exatamente a mesma coisa que este ultimo, mas internamente o model verifica
que dados vai aceitar (com base no atributo $fillable) e quais tratamentos precisa fazer (nenhum
por enquanto, posteriormente vamos tratar o campo url).

Note também que eu usei um tal de return redirect(), este cara é responsavel por fazer os
redirecionamentos (6bvio) que precisamos durante a execugao da aplicagdo. o route() ap6s o redirect
envia a requisicdo para uma rota nomeada, como usamos o ‘Route:resource()’ ja temos os nomes
das rotas criado por ele (veja a tabela que preparei no comeco do capitulo), nada mais justo eu usar.
Veja outras formas de usar o redirec() a seguir.

return redirect('home/dashboard'); // redireciona para localhost:8000/home/dashb\
oard

return back(); // volta para a pagina anterior

return redirect()->action('UsersController@index'); //redireciona para o control\
ler e action especificados

Retornando um produto
Este é simples, ja até usamos algo anteriormente, coloque isso dentro do action showy().

$product = Product::find($id);
return view ('products.show', ['product'=>$product]);

Estamos trazendo o usuario com $id informado na URL, é um query simples, mas e se quisermos
algo mais sofisticado, com multiplos resultados (um Product::all() como vimos antes), com ordenacéo
personalizada, limitado a 10 resultados, varias condi¢des, enfim, mais personalizado, como fariamos?

O O B W N~

W N O O & W N =

TN
N »~ O ©

0 = O O b W N =~

(AN
N =~ O O

CRUD 41

$flights = \App\Flight: :where('active',6 1)

->where('destination', 'San Diego')
->orderBy('name', 'desc')
->take(10)

->get(); //para trazer apenas um usudrio podemos usar o ->first(); ao invés d\
o ->get();

Mas foi s6 um exemplo, nem temos um model Flight. E aqui a nossa view:

<h1 class="page-header">{{ $data->title }}</h1>

value: {{ $data->value }}
qtd: {{ $data->qtd }}
url: {{ $data->url }}</1li>
cadastro: {{ $data->created_at }}
atualizacdo: {{ $data->updated_at }}

<hr>
<p>Description</p>

{{ $data->body }}

Editando o usuario

Para a edigdo vamos usar um método chamado update(), o processo é parecido com o que ja fizemos
antes no cadastro, ou seja, duas actions e uma view, desta vez é a edit() para exibir o formulario e a
update() para atualizar os dados.

Seguem as actions.

public function edit($id)

{
$user = User::find($id);
return view ('users.edit', ['user'=>$user]);

public function update(Request $request, $id)
{
$user = User::find($id);
$user->update($request->all());
return redirect()->route('users.index');

© © 0 1 O O b W N =

[N

0 N O O B~ W N -

(RN
N »~ O ©

CRUD 42

Muito parecido com o que fizemos antes, mas agora buscamos um registro para em seguida atualizar
os dados.

Vocé também pode passar campo por campo, assim:

$product = Product::find(1);

$product->title = $request->input('title');
$product->value = $request->input('value');
$product->qtd = $request->input('qtd');

$product->url = $request->input('url');
$product->body = $request->input('body');

$product->save();
return redirect()->route('users.index');

A nossa view.

<h1>Editando {{ $user->name }}</hi1>

<form action="{{ route('products.update', ['id'=>$data->id]) }}"method="POST">
<input type="hidden" name="_token" value="{{ csrf_token() }}">
<input type="hidden" name="_method" value="PUT">
Title: <input type="text" name="title" value="{{ $data->title }}">

Description: <textarea name="body">{{ $data->body }}</textarea>

Value: <input type="number" name="value" value="{{ $data->value }}">

Quantity: <input type="number" name="qgtd" value="{{ $data->qtd }}">

Url: <input type="text" name="url" value="{{ $data->url }}">

<input type="submit">

</form>

Se vocé consultou a tabela da rota resources ja sabe que uma requisi¢do POST nao sera bem vinda
ao enviar o formulario, precisamos de um PUT, mas formularios HTTP nao dao suportea verbos
diferentes de POST e GET, novamente o Larave surpreende, de uma atencdo ao campo _method do
nosso formulario, a solucdo é usar este campo oculto com o valor do verbo HTTP que quer usar,
neste caso o PUT, assim o Laravel refaz a requisi¢ao da forma correta.

Adicionalmente podemos criar um mutator para o campo url? A ideia é que o valor seja baseado no
campo title sempre que o url for deixado em branco, isso deve ser feito no model Product.

~N O O B W N -

~N O O B W N -

W N O Ol & W N =

[¢
W N~ OO O

CRUD 43

public function setUrlAttribute($value)

{
if ($value=="'")
$value = $this->attributes/'title'];
$this->attributes/'url'] = str_slug($value);
}

Um mutator é um método que criamos na model para manipular os dados do campo.

Note que eu usei um helper do Laravel, o str_slug(), para saber mais sobre os helpers, veja este
link da documentacéo: http://laravel.com/docs/5.1/helpers®.

Por falar em mutators, que tal ja criarmos o de senha, valores em branco também geral hash,
precisamos ensinar o Laravel ignorar campos de senha em branco, este método deve ficar no seu
modelUser.

public function setPasswordAttribute($value)

{
if ($value=="'")
unset($this->attributes/ 'password']);
else
$this->attributes/ 'password'] = berypt($value);
}

Também usei um helper aqui, o berypt, agora nosso model gera o Hash automaticamente.

Veja como ficaram nossos models.

<?php
namespace App;

use Illuminate\Auth\Authenticatable;

use Illuminate\Database\Eloquent\Model;

use Illuminate\Auth\Passwords\CanResetPassword;

use Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;
use Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

class User extends Model implements AuthenticatableContract, CanResetPasswordCon\
tract

{

Phttp://laravel.com/docs/5.1/helpers

http://laravel.com/docs/5.1/helpers
http://laravel.com/docs/5.1/helpers

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

"password'];

CRUD
use Authenticatable, CanResetPassword;
Rk
* The database table used by the model.
*
* @var string
*/
protected $table = 'users';
xRk
* The attributes that are mass assignable.
*
* @var array
*/
protected $fillable = ['name', 'email',
public function setPasswordAttribute($value)
{
if ($value=='")
unset($this->attributes['password']);
else
$this->attributes|'password'] = berypt($value);
}
}
<?php
namespace App;

use Illuminate\Database\Eloquent\Model;

class Product extends Model

{

protected $table = 'products';

Vet
* Permitir alteragbes em massa
*/

protected $fillable = ['title', 'body',

public function setUrlAttribute($value)
{

'value',

‘qtd’,

url'];

44

56
57
58
959
60
61

O O B W N -

CRUD 45

if ($value=="")
$value = $this->attributes['title'];
$this->attributes['url'] = str_slug($value);
}
}

Mutators tem um padrao para os seus nomes, se vocé nao seguir isso o Eloquent vai ignora-los. O
padrao é a palavra set seguida do nome do atributo que vamos alterar em CamelCase e encerrado
com a palavra Attribute, por exemplo, setPasswordAttribute() e setUrlAttribute().

Removendo o usuario

Ultima etapa do nosso CRUD. Remover um registro é relativamente simples, no action destroy()
coloque este codigo.

$product = Product::find($id);
$product->delete();
return redirect()->route('users.index');

Nao sei se vocé notou, mas ndo é possivel acessar a action destroy() no momento, ja que o link
remove da action index()faz uma requisicio GET (o padréo da tag *

<form action="{{ route('users.update', ['id'=>$user->id]) }}" class="form" metho\
d="POST" style="display:inline-block">

<input type="hidden" name="_token" value="{{ csrf_token() }}">

<input type="hidden" name="_method" value="DELETE">

<input type="submit" value="remove">
</form>

Agora podemos remover o nosso registro, note que a protecdo CSRF impossibilita a remoc¢ao dos
dados a partir de fontes ndo autorizadas (sem acesso ao token CSRF).

Abstraindo o CRUD

Agora que ja temos o primeiro CRUD, vamos criar os demais, mas eu simplesmente odeio repeticao,
mais que isso, odeio perder tempo, se vocé também pensa assim saiba que tem uma jogada muito
legal aqui, vamos abstrair esse CRUD, duplique o ProductsController chamando o novo arquivo de
CrudController.

Vou remover todos os comentarios por conta do espaco aqui, transformar a classe em abstrata e criar
um novo método para retornar a model. Veja todas as alteragdes.

O N O O & W N~

BB D WWWWWW W W W WNDNDNDDNDDNNDMNDNNDNNDNNAS PSS,
N P © O 0 3 O O b WONPHO O 00 NO0O O ik WONAPHO O W NO0O O i WOWN -~ O

CRUD

<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\Controller;

abstract class CrudController extends Controller

{

protected $model_instance;

public function index()

{
$data = $this->getModel()->all();
return view ($this->path.'.index', ['data'=>$data]);
}
public function create()
{
return view ($this->path.' .create');
}

public function store(Request $request)

{
$this->getModel ()->create($request->all());
return redirect()->route($this->path.'.index");

}
public function show($id)
{
$data = $this->getModel()->find($id);
return view ($this->path.'.show', ['data'=>$data]);
}

public function edit($id)

{
$data = $this->getModel()->find($id);

return view ($this->path.'.edit', ['data'=>$data]);

46

43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
o8
59
60
61
62
63
64
65

CRUD 47

public function update(Request $request, $id)

{
$data = $this->getModel()->find($id);
$data->update($request->all());
return redirect()->route($this->path.'.index"');
}
public function destroy($id)
{
$data = $this->getModel()->find($id);
$data->delete();
return redirect()->route($this->path.'.index");
}
protected function getModel()
{
if ($this->model_instance === null)
$this->model _instance = new $this->model;
return $this->model_instance;
}

Agora volte ao ProductsController e remova todos os métodos e adicione dois novos atributos

+ $model - O namespace do model.
« $path - o diretério aonde as views do crud vao ficar e a base do nome da rota.

Vocé também pode separar o $path em dois atributos distindos, $view_path e $route, assim ganha
a liberdade de alterar um independente do outro, achei desnecessario no nosso caso, fique a vontade
para decidir, mas ndo esqueca das devidas altera¢des no CrudController.

Depois troque o extends Controller do ProductsController por CrudController.

O ProductsController completo:

O N O O & W N~

S G
D W NN, O O

0 N O O & W N~

B R R s s
O O b W N~ OO O

CRUD

<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\CrudController;

class ProductsController extends CrudController

{
protected $model = '\App\Products';

protected $path = 'products’;

Pronto, agora conseguimos simplificar nosso controller, muito melhor, vocé ainda deve ver um erro
nas views, ja que troquei as variaveis $products por $data, é so fazer essa correcdo. Vou aproveitar

e criar o CRUD do ProductsController.

<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\CrudController;

class UsersController extends CrudController

{

protected $model = '\App\User';
protected $path = 'users';

Agora s6 precisamos dos arquivos de view do UsersController, veja como eles devem ficar.

48

O N O O & W N~

BB D WWWWWW W W W WNDNDNDDNDDNNDMNDNNDNNDNNAS PSS,
N P © O 0 3 O O b WONPHO O 00 NO0O O ik WONAPHO O W NO0O O i WOWN -~ O

CRUD 49

//users/create.blade.php
<h1 class="page-header">{{ $data->name }}</h1>

<liremail: {{ $data->email }}</1i>
cadastro: {{ $data->created_at }}</1i>
atualizacado: {{ $data->updated_at }}</1i>

//users/edit.blade.php
<h1 class="page-header">Editando {{ $data->name }}</h1>

<form action="{{ route('admin.users.update', ['id'=>$data->id]) }}" class="form"\
method="POST">

<input type="hidden" name="_token" value="{{ csrf_token() }}">

<input type="hidden" name="_method" value="PUT">

Name: <input type="text" name="name" class="form-control" value="{{ $data->name\

11>

Email: <input type="email" name="email" class="form-control" value="{{ $data->e\

mail }}">

Password: <input type="password" name="password" class="form-control"” value="">\

<input type="submit" class="btn btn-primary">
</form>

//users/index.blade.php
<h1 class="page-header">
Usuarios

<small><a href="{{ route('admin.users.create') }}" class="btn btn-success btn-x\

s">novo</small>
</h1>

<table class="table table-hover table-striped">

<thead>
<tr>
<th>id</th>
<th>name</th>
<th>mail</th>
<th class="text-right">actions</th>
</tr>

</thead>

43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4

CRUD 50

<tbody>
@foreach ($data as $k=>3%v)
<tr>
<td>{{ $k+1 }}</tad>
<td>{{ $v->name }}</td>
<td>{{ $v->email }}</td>
<td class="text-right">

$v->id]) }}" class="t
mary btn-xs">view
$v->id]) }}" class="t
ault btn-xs">edit
<form action="{{ route('admin.users.update', ['id'=>$v->id]) }}" «
" method="POST" style="display:inline-block">
<input type="hidden" name="_token" value="{{ csrf_token()
<input type="hidden" name="_method" value="DELETE">
<input type="submit" value="remove" class="btn btn-xs btn-
</form>
</td>
</tr>
@endforeach
</tbody>
</table>
//users/show.blade.php

<h1 class="page-header">{{ $data->name }}</h1>

email: {{ $data->email }}
cadastro: {{ $data->created_at }}
<liratualizacdo: {{ $data->updated_at }}</1li>

No préximo capitulo vamos incrementar mais nossa aplicacio validando os dados e também criando
o CRUD de categorias para relacionarmos com produtos.

0 N O O s~ W N -

0 I O O b W N =

S G
D W NN, O

Validacoes

Uma parte essencial do processo de desenvolvimento de qualquer aplicacdo para qualquer que seja
o fim.

A camada de validagdo ajuda o seu usuario a enviar dados da forma esperada enquanto mantem
a seguranca. Existem diversas formas de validar dados com Laravel 5, uma delas é com o $this-
>validate direto no controller, o método recebe dois parametros, o primeiro é o objeto Request (que
usamos para pegar os dados do formulario) e o segundo é um array com as regras de validacao.

$this->validate($request,
[
'title' => 'required|min:3',
'body' => 'required',
'value' => 'required|numeric',
'qtd' => 'required|numeric’,

);

O action a seguir valida os dados antes de salvar um produto, se colocado noProductsController ele
vai substituir o store() do CrudController, esta é uma forma de escrever seus actions do crud com
codigo personalizado para a cituacdo, ja que o action CrudController@store deixa de ser executado
para dar lugar ao novo ProductsController@store.

public function store(Request $request)

{
$this->validate($request,

[
'title' => 'required|min:3',
'body' => 'required',
'value' => 'required|numeric',
'gqtd' => 'required|numeric',

]

);

$this->getModel()->create($request->all());
return redirect()->route($this->path.'.index');

© 00 39 O O b W N =

0 = O O b W N =~

Y
S O

1
12
13
14
15
16
17
18
19
20
21

Validagoes 52

Para ver todas as validagdes disponiveis veja este link da documentacao: http://laravel.com/docs/5.1/validation#avail
validation-rules*®.

Com isso nossa view também ja tem acesso as mensagens de erros, va até products/cre-
ate.blade.php e adicione o seguinte:

@if (count($errors) > 0)
<div class="alert alert-danger">

@foreach ($errors->all() as $error)
<1i>{{ $error }}</1i>
@endforeach

</div>
@endif

O arquivo completo deve ficar assim:

<h1>Cadastrar</h1>

@if (count($errors) > 0)
<div class="alert alert-danger">

@foreach ($errors->all() as $error)
{{ $error }}
@endforeach

</div>
@endif

<form action="{{ route('products.store') }}" method="POST">
<input type="hidden" name="_token" value="{{ csrf_token() }}">
Title: <input type="text" name="title">

Description: <textarea name="body"></textarea>

Value: <input type="number" name="value">

Quantity: <input type="number" name="qgtd">

Url: <input type="text" name="url">

<input type="submit">
</form>

Tente enviar o formulario vazio ou o campo title com 2 ou menos caracteres e vocé recebera
mensagens de erro e o registro ndo sera salvo. Claro, as mensagens estdo em inglés e talvez nao
te agradem, que tal substituir? Para isso incluimos um terceiro array nas validacoes.

http://laravel.com/docs/5.1/validation#available-validation-rules

http://laravel.com/docs/5.1/validation#available-validation-rules
http://laravel.com/docs/5.1/validation#available-validation-rules
http://laravel.com/docs/5.1/validation#available-validation-rules

O N O O & W N~

1
12
13

0 N O O & W N =~

B R s o
o > O N =~ O O

Validagoes 53

$this->validate($request,
[
'title' => 'required|min:3',
'body' => 'required',
'value' => 'required|numeric',
'qtd' => 'required|numeric’,

'required' => ':attribute ndo deve ficar vazio.',
'min' => ':attribute deve ter mais de :min caracteres.',

'"numeric' => ':attribute deve ser um ndmero.'

);

i i i aorequired, min e numeric a , é
Com isso todos os itens com validacido d e receberdo estas mensagens, se vocé
quiser algo mais especifico basta usar campo.regra na chave do array, exemplo:

$this->validate($request,
[
'title' => 'required|min:3',
'body' => 'required',
'value' => 'required|numeric',
'qtd' => 'required|numeric',

'required' => ':attribute ndo deve ficar vazio.',

'title.required' => 'O titulo é obrigatério', //aqui o campo title tem uma men\
sagem personalizada

'min' => ':attribute deve ter mais de :min caracteres.',

'"numeric' => ':attribute deve ser um ndmero.'

);

Por fim vamos resolver um bug que apareceu, quando algum dado nao valida o formulario tem todos
os dados apagados, para isso basta usarmos o old('campo') nos capos do formulario, assim:

© 00 9 O O b W N =

0 N O O & W N~

NN N DN DN NN NN A B S L s s s
© 0 T O Ul i WD P~ O © W10 0l N R O ©

Validacoes 54

<form action="{{ route('products.store') }}" method="POST">
<input type="hidden" name="_token" value="{{ csrf_token() }}">
Title: <input type="text" name="title" value="{{ old('title') }}">

Description: <textarea name="body">{{ old('body') }}</textarea>

Value: <input type="text" name="value" value="{{ old('value') }}">

Quantity: <input type="number" name="qtd" value="{{ old('qtd') }}">

Url: <input type="text" name="url" value="{{ old('url') }}">

<input type="submit">

</form>

Agora sim, o formulario de criagdo de produtos esta perfeito no que diz respeito a funcionalidade,
existem outras formas de conseguir o mesmo efeito, outra solucdo é usar o Validator: :make().

<?php
namespace App\Http\Controllers;

use Validator;
use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

class PostController extends Controller

{

Vi s
* Store a new blog post.
*
* @param Request $request
* @return Response
*/
public function store(Request $request)
{
$validator = Validator::make($request->all(), |
'title' => 'required|unique:posts|max:255",
'body' => 'required',

1);

if ($validator->fails()) {
//em caso de falha
return redirect('post/create')
->withErrors($validator)
->withInput();

30
31
32
33

0 = O O b W N =~

N = U
B W N O O

0 N O O B W N~

N S G N
O O b W N~ OO O

Validagoes 55

// em caso de sucesso (armazena os dados, por exemplo)

Agora que tal copiar isso para a action edit()? Melhor nao, replicar cédigo é horrivel, podemos
abstrair criando um atributo em cada Controller com o array de validagao. Este seria o novo store()
do CrudController:

public function store(Request $request)

{
$this->validate($request, $this->rules,
[
'required' => ':attribute ndo deve ficar vazio.',
'title.required' => 'O titulo é obrigatdrio’,
'min' => ':attribute deve ter mais de :min caracteres.',
"numeric' => ':attribute deve ser um nlmero.'
1
),
$this->getModel()->create($request->all());
return redirect()->route($this->path.'.index");
}

E o ProductsController:

<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\CrudController;
use Illuminate\Contracts\Validation\Validator;

class ProductsController extends CrudController

{
protected $model = '\App\Product';

protected $path = 'products’;
[

'title' => 'required|min:3',

protected $rules

17
18
19
20
21
22

0 N O O B~ W N -

S =Y
<N O O WO N =r OO O

Validagoes 56

'body' => 'required',

'value' => 'required|numeric',

'gqtd' => 'required|numeric',
1;

Também ndo quero que o atributo $rules seja obrigatério, entdo vou adicionar um $rules com
array vazio no CrudController:

<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\Controller;
use App\User;

abstract class CrudController extends Controller

{

protected $model_instance;
protected $rules = [];

//resto do controller

O problema desta abordagem, embora funcione e por isso ninguém pode dizer que esta errado, é que
quebramos algumas regras de boas praticas, como por exemplo o MVC, aonde logica tem que ficar
no model ou pelo menos fora do controller, ou de S.0.L.ID. aonde um objeto tem que ter um tnico
motivo de existir e a do controller é controlar (ndo diga!) a execucdo de outras classes e ndo ditar
regras, ou o proprio propdsito das praticas modernas e orientacdo a objetos que é a independéncia
do codigo a nivel de classe.

Entdo vamos remover estas regras dai e criar um Form Request, mas vou facilitar, alias, o Laravel
vai facilitar, vamos usar o Artisan:

php artisan make:request ProductsRequest

Com isso criamos uma classe ProductsRequest em app/Http/Requests/ProductsRequest.php que
deve ser exatamente esta:

O N O O & W N~

W NN NDNDDNDDNDDNDNDNDNNAS =S e
© © 00 9 O Ol b W N~ O © W 3O O b N~ OO O

Validagoes 57

<?php
namespace App\Http\Requests;
use App\Http\Requests\Request;

class ProductsRequest extends Request

Rk
* Determina se o usuario estd autorizado a fazer esta requisigédo.
*

* @return bool
*/
public function authorize()

{

return false;

Vet
* Obtem as regras de validagdo para aplicar a requisigao.
*
* @return array
*/
public function rules()
{
return |
//
l;

O método authorize() diz se o usuario deve ou ndo ter acesso a requisicao, como esta ninguém tera
acesso, entdo mude o retorno para true, o método rules() vai retornar as regras de validacao, e por
fim vamos criar um método messages() com as traducoes, nosso novo request devera ficar assim:

O N O O & W N~

W W W W WNDNDDNDDDDNDNDDNDDNDNDDNDSS A 2~ B2 2 2 2
B O NP2 OO O 00 N0 0k WA O© N0 O N~ ©

Validacoes

<?php

namespace App\Http\Requests;

use App\Http\Requests\Request;

class ProductsRequest extends Request

{
public function authorize()
{
return true;
}
public function rules()
{
return |
'title' => 'required|min:3',
'body' => 'required',
'value' => 'required|numeric',
'gqtd' => 'required|numeric’',
1;
}
public function messages()
{
return |
'required' => ':attribute ndo deve ficar vazio.',
'title.required' => 'O titulo é obrigatério’,
'min' => ':attribute deve ter mais de :min caracteres.',
'numeric' => ':attribute deve ser um ndmero.'
1;
}
}

Note que eu removi os comentarios. Para aplicar no controller:

58

O N O O & W N~

N N B s sl s
, O O 0 J O O b W N~ O O

0 N O O B W N~

©

10
1
12
13

Validagoes 59

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests\ProductsRequest; // nosso request
use App\Http\Controllers\Controller;

use App\User;

abstract class CrudController extends Controller

{
//restante da classe
public function store(ProductsRequest $request)
{
$this->getModel ()->create($request->all());
return redirect()->route($this->path.'.index"');
}
//restante da classe
}

Agora fica muito mais limpo e o melhor, unificado, mas esse cédigo ndo pode ficar assim ja
que ele também vai usar estas regras de valida¢do para outros controllers, como por exemplo
0 UsersController que deveria ter o seu UsersRequest com suas proprias regras de validagao,
entdo, mantenha o CrudController original (com o Request padrao) e vamos brincar abstraindo o
ProductsRequest. Vamos criar uma nova classe abstrata no mesmo diretério do ProductsRequest,
por falta de nome melhor vou chamar de AbstractRequest.

<?php
namespace App\Http\Requests;
use App\Http\Requests\Request;

abstract class AbstractRequest extends Request

{

public function authorize()

{

return true;

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0 = O O b W N =~

Y SN
O O b WO N~ O

Validacoes

public function rules()
{
if ($this->isMethod('post') or $this->isMethod('put'))
return $this->rules;
return [];
}
public function messages()
{
return |
'required' => ':attribute ndo deve ficar vazio.',
'title.required' => 'O titulo é obrigatério’',
'min' => ':attribute deve ter mais de :min caracteres.',
'numeric' => ':attribute deve ser um ndmero.'
1;
}
}

60

Qualquer método pode ser sobrescrito, como authorize() por exemplo, ou deixar como informado

acima, veja como ficaria a nossa classe ProductsRequest:

<?php

namespace App\Http\Requests;

use App\Http\Requests\AbstractRequest;

class ProductsRequest extends AbstractRequest

{

protected $rules = |
'title' => 'required|min:3',
'body' => 'required',
'value' => 'required|numeric',
'gtd' => 'required|numeric',

1;

E agora vamos deixar o IoC do Laravel trabalhar por nds, no seu ProductsController crie um

método construtor:

O N O O & W N~

N N N S L sy s
© © 0 1 O O b W N~ O O

0 N O O & W N =~

[¢
W N~ O

Validagoes 61

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests\ProductsRequest;
use App\Http\Controllers\CrudController;

use Illuminate\Contracts\Validation\Validator;

class ProductsController extends CrudController

{
protected $model = '\App\Product';
protected $path = 'products’;
public function __construct(ProductsRequest $request)
{
}
}

Pode parecer errado um método vazio, afinal métodos nao devem existir sem um propdsito, mas ele
tem um sim, o proposito de injetar o nosso Request personalizado para executar as validagoes, agora
qualquer execucdo que for POST ou PUT vai validar os dados, inclusive no update() e store().

Pode acontecer de vocé precisar validar dados fora do controller, neste caso vocé ja tem a validacéo
pronta para ser usada, essa é a real vantagem deste formato de validar dados.

Vamos ver como ficaria isso com o Users?

Request:

<?php

namespace App\Http\Requests;

use App\Http\Requests\AbstractRequest;

class UsersRequest extends AbstractRequest
{
protected $rules = |
'name' => 'required|min:3',
'email' => 'required|email’

1;

0 N O O & W N~

N F S S L sy s
© © 0O 1 O O b W N~ O O

© 00 39 O Ol b W N =~

Validagoes 62

Controller:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests\UsersRequest;
use App\Http\Controllers\CrudController;

class UsersController extends CrudController

{
protected $model = '\App\User';
protected $path = 'users';
public function __construct(UsersRequest $request)
{
}
}

Que tal? Simples, rapido e eficiente, um CRUD completo em apenas algumas linhas e vocé pode
personalizar o que quiser, apenas criando os métodos, o que vai substituir os originais.

Que tal vocé traduzir a mensagem de validacdo de emails?

Lembra daquele bloco de codigos que exibe as mensagens de erro, que tal criar um arquivo externo
para ele, assim facilita as coisas pra gente.

C)arquhn)de\deVIenlresources\views\helpers\validate_erros.blade.phpteréeshiconieﬁdo:

@if (count($errors) > 0)
<div class="alert alert-danger">

@foreach ($errors->all() as $error)
<1i>{{ $error }}</1i>
@endforeach

</div>
@endif

E nas views (por exemplo a create.blade.php de products)

O N O O & W N~

(RN
N O ©

13

Validacoes 63

<h1>Cadastrar</hi>»
@include('helpers.validate_errors')

<form action="{{ route('products.store') }}" method="POST">
<input type="hidden" name="_token" value="{{ csrf_token() }}">
Title: <input type="text" name="title" value="{{ old('title') }}">

Description: <textarea name="body">{{ old('body') }}</textarea>

Value: <input type="text" name="value" value="{{ old('value') }}">

Quantity: <input type="number" name="qtd" value="{{ old('qtd') }}">

Url: <input type="text" name="url" value="{{ old('url') }}">

<input type="submit">

</form>

Menos cddigo espalhado pra gerenciar, ndo esqueca de aplicar nos demais formularios.

Relacionamentos

Agora precisamos relacionar nossos produtos com as categorias, mas antes, se vocé ainda néo criou
o cgerenciamento de categorias essa é uma excelente hora, vou deixar o cddigo abaixo pra te ajudar,

O O 0 N O O b W N =~

RGN

0 N O O & W N =~

U S YN
0 I O O b WON~=~ O O

mas vocé ja deve poder fazer isso sozinho.

Model:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Category extends Model

{
protected $table = 'categories';
protected $fillable = ['title'];
}
Controller:
<?php

namespace App\Http\Controllers;

use App\Http\Requests\CategoriesRequest;
use App\Http\Controllers\CrudController;

class CategoriesController extends CrudController

{
protected $model = '\App\Category';
protected $path = 'categories';

public function __construct(CategoriesRequest $request)

{

0 N O O &~ W N =

(RN
N »~ O ©

W N O O & W N =

N NN DNMNNMNDNDNEASE PSP PR,
O B O NP O O 01 O O b W N~ O

Relacionamentos

Request:

<?php
namespace App\Http\Requests;
use App\Http\Requests\AbstractRequest;

class CategoriesRequest extends AbstractRequest

{

protected $rules = |
'title' => 'required|min:3',

1;

}
View index:
<h1>Categories</h1>
<table>
<thead>
<tr>
<th>id</th>
<th>title</th>
<th>actions</th>
</tr>
</thead>
<tbody>
@foreach ($data as $k=>$v)
<tr»>

<td> {{ $k+1 }}</td>
<td> {{ $v->title }}</td>
<td>

<a href="{{ route('categories.show',
<a href="{{ route('categories.edit"',
<form action="{{ route('categories.update',

style="display:inline-block">

<input type="hidden" name="_token" value="{{ csrf_token()
<input type="hidden" name="_method" value="DELETE">
<input type="submit" value="remove">

</form>
</td>

65

["id'=>$v->id]) }}">view
["id'=>$v->id]) }}"redit
["id'=>$v->id]) }}" me

26
27
28
29

© 00 3 O O & W N

© © 00 N O O b W N+~

[N

O O b W N =

Relacionamentos 66

</tr>
@endforeach
</tbody>
</table>

View create:
<h1>Cadastrar</hi>
@include('helpers.validate_errors')

<form action="{{ route('categories.store') }}" method="POST">
<input type="hidden" name="_token" value="{{ csrf_token() }}">
Title: <input type="text" name="title" value="{{ old('title') }}">

<input type="submit">

</form>

View edit:
<h1>Editando {{ $data->name }}</hi>
@include('helpers.validate_errors')

<form action="{{ route('categories.update', ['id'=>$data->id]) }}" method="POST">
<input type="hidden" name="_token" value="{{ csrf_token() }}">
<input type="hidden" name="_method" value="PUT">
Title: <input type="text" name="title" value="{{ $data->title }}">

<input type="submit">

</form>

View show:
<h1>{{ $data->title }}</h1>

cadastro: {{ $data->created_at }}</1i>
atualizacdo: {{ $data->updated_at }}

E agora vamos ao que interessa, relacionamentos.

Relacionamentos no Eloquent sao definidos dentro de métodos na model, imagine que cada produto
pertence a varias categorias, e que o contrario também acontece, cada categoria pertence a varios
produtos, este é um relacionamento muitos para muitos, é o que faremos aqui. Veja a seguir.

O N O O & W N~

W W W N DNDNDNDNDDNDNDDNNNMNNDNASEASPA PP s
N P © O 0 3 O O b WONP,O O 00N O O WD~ O

Relacionamentos 67

<?php
namespace App;
use Illuminate\Database\Eloquent\Model;

class Product extends Model

{
protected $table = 'products';

Rk
* Permitir alteragcbes em massa
*/
protected $fillable = ['title', 'body', 'value',6 'qtd', 'url'];

public function setUrlAttribute($value)

{
if ($value=='")
$value = $this->attributes['title'];

$this->attributes['url'] = str_slug($value);

ez
* Relacionamento entre o model Category e o atual (Product)
*/
public function categories()
{
//este é um relacionamento muitos para muitos
return $this->belongsToMany('App\Category');

Relacionamentos sempre ddo uma dor de cabeca danada aos desenvolvedores, mas o Laravel torna
tudo muito simples, com apenas uma linha vocé ja tem acesso a todos os dados em questdo. Veja
como resgatariamos os registros do model acima.

O N O O & W N~

0 N O O B~ W N -

SR s s
O O b W N -~ O O

Relacionamentos 68

$product = \App\Product::find($id);
$categories = $product->categories;

echo '<h1>'. $product->title .'</h1>"';

foreach ($categories as $category) {
echo $category->title;

Simples ndo é, vamos mais a fundo e entender um pouco mais sobre o assunto.

Um usuario em uma rede social possui um unico perfil, chamamos este relacionamento de um
para um, por outro lado um usuario pode ter varias imagens no album, este relacionamente é um
para muitos, a grande diferenca entre muitos para muitos e um para muitos é que o primeiro é
exatamente o mesmo se invertido, ao dento que a inversao de um para muitos é um para um, uma
foto pertence a um usuario.

1 usuério tem 1 perfil -> 1 perfil pertence a 1 usuario -> um para um ou has one. 1 usuario tem
muitas imagens -> 1 imagem pertence a 1 usuario -> muitos para um ou has many 1 produto tem
muitas categorias -> 1 categoria tem muitos produtos -> muitos para muitos oumany to many.

O contrario de has one e has many é belongs to ou pertence a, o contrario de many to many é
many to many, pegou o jeito? Vamos ao codigo entdo.

Para declarar um relacionamento has one:

<?php
namespace App;
use Illuminate\Database\Eloquent\Model;

class User extends Model

{
Veis
* Retorna o registro do perfil associados ao usuario
*/
public function profile()
{
return $this->hasOne('App\Profile');
}
}

Para declarar um relacionamento has many:

O N O O & W N~

SR R s s
O O b WN -~ OO O

0 N O O & W N~

N =Y
<N O O W NN =r OO O

Relacionamentos

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{
Vet
* Retorna os registros de imagens associados ao usuario
*/
public function images()
{
return $this->hasMany('App\Image');
}
}

Para declarar um relacionamento belongs to:

<?php
namespace App;
use Illuminate\Database\Eloquent\Model;

class Image extends Model

{
Vet
* Retorna o registro de usuario relacionado a imagem
* Seria parecido com o perfil, mas no model Profile.
*/
public function post()
{
return $this->belongsTo('App\User');
}
}

69

Para declarar um relacionamento many to many, na verdade este é o nosso model ja exibido antes.

O N O O & W N~

NN NN NDNDDNDNDDN A B 1 s |y
0 3 O O b W N~ O O 00 O O b WD~ O O

Relacionamentos

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Product extends Model

{

protected $table = 'products’;

Rk
* Permitir alteragcbes em massa
*/

protected $fillable = ['title', 'body',

public function setUrlAttribute($value)

{
if ($value=="")

'value',

$value = $this->attributes['title'];

$this->attributes['url'] = str_slug($value);

}
public function categories()
{
return $this->belongsToMany('App\Category');
}

‘qtd’,

‘url'];

70

Agora sempre que buscarmos um registro no banco teremos acesso as categorias e vocé ainda pode
usar o query builder que estudamos no capitulo anterior, por exeplo, se tivessemos um campo active

para informar se uma categoria esta ativa ou nao e ainda precisar ordernar pelo title:

$product = \App\Product::find($id);

$categories = $product->categories()->where('active', 1)->orderBy('title')->get(\

);

Agora imagine que vocé precise (e vamos precisar) de um array para um conjunto de checkboxes e
assim podermos associar as produtos a categorias.

O = W N =

B W N -

Relacionamentos 71

\App\Product: : find($id);
$product->categories->lists('title','id')->toArray();

$product
$checked

Este cddigo retornaria, por exemplo, o seguinte array.

[
1=>"Informatica',
3=>'Eletrbénicos',
8=>"Notebooks'

I;

O Laravel também facilita muito o processo de informar novos relacionamento entre registros com os
métodos attach() para adicionar um relacionamento, o detach() para remover um relacionamento
e 0 sync() que remove todos os relacionamentos e adiciona os novos informados, muito util este
ultimo.

$product->categories()->attach(1); //cria um relacionamento
$product->categories()->detach(1); //remove um relacionamento

Ambos os métodos também aceitam um array com varios ids a relacionar ou remover o relaciona-
mento.

$product->categories()->attach([1, 2, 3, 4, 5]);
E o método attach() ainda atualiza campos:

$product->categories()->attach(1, ['active'=>'s']); //atualiza e relaciona 1 reg\
istro
$product->categories()->attach([1=>"active'=>'s', 2, 3, 4, 5]); //atualiza e rel)\

aciona varios registros

Além destes 2 ainda temos o sync() que remove todos os relacionamentos e relaciona somente os
valores passados, ele aceita um array que pode ou néo atualizar campos, assim como o attach().

$product->categories()->sync([1=>"'active'=>'n"', 5]);

Com essas novas informacoes em mente vamos atualizar o nosso controller:

O N O O & W N~

BB W W W W W W oW WWWNDNDNDNDDNDDNDMNNDDNDNNNMNNDASERASEPA,EPSEPS PSS s
O O© 00 9 O O b O NP O O 00O O b WONAPHO O 0O NO O ik WOWN -~ O

Relacionamentos 72

<?php

namespace App\Http\Controllers;

use

use

use
use

Illuminate\Http\Request;
App\Http\Requests\ProductsRequest;
App\Http\Controllers\CrudController;
Illuminate\Contracts\Validation\Validator;

class ProductsController extends CrudController

{

}

protected $model = '\App\Product';
protected $path = 'products';

public function __construct(ProductsRequest $request)

{
}
Rk
* Novo action
*/
public function categories(Request $request, $id)
{
$product = \App\Product:: find($id);
if ($request->isMethod('post')) {
$product->categories()->sync($request->input('categories'));
return redirect()->route($this->path.'.categories', ['id'=>$id]);
}
$categories = \DB::table('categories')->lists('title', 'id');
$checked = $product->categories->lists('title','id"')->toArray();
return view (
$this->path.'.categories',
['data'=>$product, 'checked'=>$checked, 'categories'=>$categories]
)i
}

Também precisamos cria uma nova rota, ja que esta nova action ndo sera identificada pelo

O = W N =

0 N O O & W N =

S G EN
O O b WD~ OO O

© 00 39 O O b W N =~

Relacionamentos 73

Route: :resources(), vamos usa o0 Route: :match().

Route: :match(
['get', 'post'],
'/products/categories/{id}",
['uses'=>'ProductsController@categories', 'as'=>'products.categories']

)

E finalmente a nossa view categories.blade.php.

<h1>Categorias de {{ $data->title }}</h1>

<form action="{{ route('products.categories', ['id'=>$data->id]) }}" class="form\
" method="POST">

<input type="hidden" name="_token" value="{{ csrf_token() }}">

@foreach ($categories as $k=>$category)

<1li>
<input type="checkbox" name="categories|[]" value="{{$k}}" @if ('empty($che

d[$k])) checked @endif>

{{$category}}
</11i>
@endforeach

<input type="submit" class="btn btn-primary">

</form>

Mas ndao vai funcionar, ao enviar o formuldrio o ProductsRequest vai tentar validar os dados e,
ap6s ndo conseguir, ird redirecionar para o formulario novamente, ndo queremos que ele aplique as
regras de validagdo aqui entdo vamos acertar nossa logica e criar um método para verificar a action
que esta sendo chamada, isso no AbstractRequest.

protected function checkAction()

{
if (empty($this->route()->getAction()/'as']))
return false;

$base = explode('.', $this->route()->getAction()/'as']);

if (empty($base/1]))
return false;

10
11
12

0 N O O & W N~

W W W N DNDNDNDNDDNMNDNDDNNNMNNDASEPAEPA, PSSP
N P © O 0 39 O O b WON-»O O 00N O O kW N~O O

Relacionamentos 74

return in_array($base/1/, $this->actionsToValidate);

Na primeira linha eu verifico se a rota atual é nomeada, se for eu quebro em duas partes com
base no ponto (lembre-se que os nomes das rotas do *Route:resources()* seguem o padrao
controller.action) e se existir mais de umitem no array eu uso o segundo elemento (o action)
para verificar se ele esta na lista de permissdo definida no atributo $actionsTovalidate.

Aplicaremos este novo método ao rules(), veja a classe completa.

<?php
namespace App\Http\Requests;
use App\Http\Requests\Request;

abstract class AbstractRequest extends Request

{

protected $actionsToValidate = ['store', 'update'];

public function authorize()

{

return true;

public function rules()
{
if (($this->isMethod('post') or $this->isMethod('put')) and $this->check\
Action()) {
return $this->rules;

return [];

public function messages()
{
return |
'required' => ':attribute ndo deve ficar vazio.',
'title.required' => 'O titulo é obrigatério’,
'min' => ':attribute deve ter mais de :min caracteres.',

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Relacionamentos 75

"numeric' => ':attribute deve ser um nlmero.',
'email' => ':attribute deve ser um email valido.'
1;
}
protected function checkAction()
{
if (empty($this->route()->getAction()['as']))
return false;
$base = explode('."', $this->route()->getAction()['as']);
if (empty($base[1]))
return false;
return in_array($base[1], $this->actionsToValidate);
}
}

Com isso podemos usar actions personalizadas e definir se vamos ou nao valida-las substituindo o
$actionsToValidate no controller original se necessario.

Falta s6 adicionar um link na listagem de produtos:
$v->id]) }}">relations

Agora temos o ProductsController com um CRUD, validacéo e até relacionamento entre produtos e
categorias, mas, embora funcional, ainda esta feio o nosso painel, vamos resolver isso no préoximo
capitulo e ainda incrementar um sistema de autenticacao.

Painel de administracao

Tema da administracao

Para o a administracdo da loja vou usar um tema construido Twitter Bootstrap, ele é gratuito e esta
disponivel para download neste link: http://startbootstrap.com/template-overviews/sb-admin/"’,
vocé pode baixar e descompactar em qualquer lugar FORA da instalagao do Laravel.

Criando o tema

Precisamos que este tema (css, js, fontes, etc...) fique disponivel para a internet, o Laravel protege
todos os arquivos de acesso externo setando o document root no diretério public, em outras
palavras, sempre que acessarmos o site no navegador estaremos, na verdade, acessando o diretério
public da raiz do Laravel, isso evita que nossos scripts PHP e arquivos de configuracdo possam ser
acessados.

Copie os 4 diretorios do tema para dentro de public/admin (crie se necessario) de forma que fique
assim:

+ public
— admin
* css
* font-awesome
* fonts

*js

Com isso ja podemos acessar o Twitter Bootstrap através do link http://localhost:8000/admin/css/bootstrap.css,
por exemplo.

Dentro de resources/views vamos criar um novo arquivo chamado admin.blade.php, note que
poderiamos criar direto na raiz do diretério views, mas vamos organizar um pouco as coisas,
que tal um novo diretério para os temas? Mais interessante, ndo! Vou chamar de layouts, o
caminho completo sera resources/views/layouts/admin.blade.php, copie todo o cédigo do arquivo
index.html para o nosso layout admin.

Vou remover o conteudo e separar a navegacao (para ficar com arquivos menores e mais simples
de alterar), remova tudo entre as linha 198 e 465 (esse seria o cddigo dentro da div com a classe
.container-fluid, mantenha esta div, s6 remova o contetido dela). Isso remove o contetido do tema,
o Laravel vai se encarregar de inserir isso dinamicamente. No lugar do que cdédigo que removeu
coloque apenas isso:

http://startbootstrap.com/template-overviews/sb-admin/

http://startbootstrap.com/template-overviews/sb-admin/
http://startbootstrap.com/template-overviews/sb-admin/

0 N O O & W N =

N NN DNMNNMNDNDNA-ASE PSP PR PR,
O b O N O O 01O O b WN=O O

Painel de administracio 77
@yield('content")

O@yield() informa um bloco de cédigo ou string a ser inserido naquele ponto do tema, neste caso
sera o conteddo que criamos para a administracdo, ou seja, as tabelas, formularios e tudo o que
criamos nos capitulos anteriores.

Agora copie tudo da linha 40 até a 193 (.navbar-collapse) e cole tudo em um novo arquivo em
resources/views/layouts/navigation/admin.blade.php (vocé tera que criar este arquivo), no lugar
do que copiou de admin.blade.php (linhas 40 a 193) cole o coédigo abaixo (sim, substitua tudo).

@include('layouts.navigation.admin')

Isso finaliza as coisas por enquanto.
O @include() funciona como o include() do PHP, ou seja, carrega um arquivo externo.

O nosso tema admin deve estar como o codigo abaixo.

<IDOCTYPE html>
<html lang="pt-br">

<head>

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">

<title>Loja Laravel</title>

<link href="/admin/css/bootstrap.min.css" rel="stylesheet">

<link href="/admin/css/sb-admin.css" rel="stylesheet">

<link href="/admin/css/plugins/morris.css" rel="stylesheet">

<link href="/admin/font-awesome/css/font-awesome.min.css" rel="stylesheet" t\
ype="text/css">

<I--[if It IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv. js"><\
/script>
<script src="https://oss.maxcdn.com/libs/respond. js/1.4.2/respond.min. js\
"></script>
<!'[endif]-->

</head>

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

© © 00 N O O & W N =~

N

Painel de administracio 78

<body>
<div id="wrapper">
@include('layouts.navigation.admin')
<div id="page-wrapper">
<div class="container-fluid">@yield('content')</div>
<!-- /.container-fluid -->
</div>
<!-- /#page-wrapper -->
</div>
<!-- /#wrapper -->
<I-- jQuery -->
<script src="/admin/js/jquery.js"></script>
<script src="/admin/js/bootstrap.min. js"></script>
<seript src="/admin/js/plugins/morris/raphael .min. js"></script>
<seript src="/admin/js/plugins/morris/morris.min. js"></script>
<script src="/admin/js/plugins/morris/morris-data. js"></script>
</body>
</html>

Vamos trabalhar naquele menu de navegacdo? Eu removi a sessdo Top Menu Items completamente
e criei links para os diversos cruds que criamos, ficou assim:

<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-\
target=".navbar-exl-collapse">
Toggle navigation

</button>
Administracdo

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

O = W N =

Painel de administracio 79

</div>
<div class="collapse navbar-collapse navbar-exl-collapse">
<ul class="nav navbar-nav side-nav">

<i class="fa fa-fw fa-da\
shboard"»</i> Produtos
</1i>

<i class="fa fa-fw fa-\
dashboard"></i> Categorias
</1i>
<1li>
<i class="fa fa-fw fa-dashb\
oard"»</i> Usuarios
</1li>

</div>
</nav>

Vocé lembra do route()? Usei ele nos links para gerar uma url com base em uma rota nomeada.

Usando o tema

Agora precisamos informar que as nossas views devem usar o tema que criamos, lembra da view
products.index (vocé ja deve saber que ela fica em *resources/views/products/index.blade.php),
precisamos que ela siga a regra a seguir:

@extends('layouts.admin')

@section('content"')
//conteudo da action
@endsection

O @extends informa o layout a usar (neste caso, o que acabamos de criar) e 0 @section o contetdo a
se colocar em um @yield do tema, criamos um @yield('content'), entdo o @section('content"')
informa o que deve ser colocado naquele @yield(), o resultado final do products.index:

O N O O & W N~

W W W W W WwWwwWwowowNnNDNMNDNDNDNDNDNDNDNAES PP,
©O© 00 9 O O b WNA-AO O© 03O0 Ol N © 03O0 Ol O~ O O

Painel de administracio 80

@extends('layouts.admin')

@section('content')
<h1 class="page-header">Products</h1>

<table class="table table-hover table-striped">

<thead>
<tr>
<th>id</th>
<th>title</th>
<th>qtd</th>
<th class="text-right">actions</th>
</tr>
</thead>
<tbody>
@foreach ($data as $k=>%v)
<tr>

<td> {{ $k+1 }r</td>
<td>{{ $v->title }}</td>
<td>{{ $v->qtd }}</td>
<td class="text-right">
$v->id]) }}" cl:
ry btn-xs">view
$v->id]) }}" cl:
1t btn-xs">edit
$v->id])
-default btn-xs">relations
<form action="{{ route('products.update', ['id'=>$v->id])
method="POST" style="display:inline-block">
<input type="hidden" name="_token" value="{{ csrf.
<input type="hidden" name="_method" value="DELETE’
<input type="submit" value="remove" class="btn btr
</form>
</td>
</tr>
@endforeach
</tbody>
</table>
@endsection

Eu aproveitei para incluir algumas classes css do Twitter Bootstrap, o mesmo pode ser feito em todas
as outras views.

© 00 39 O O b W N =~

, O O 0 N O O b W N -~

NN

Painel de administracio 81

Rota com /admin

Agora vamos adicionar um /admin nas nossas URLs, isso é simples, basta agruparmos as rotas abaixo.

Route: :match(
['get', 'post'],
'/products/categories/{id}",

['uses'=>'ProductsController@categories', 'as'=>'products.categories']
)i
Route: :resource('products', 'ProductsController');
Route: :resource('users', 'UsersController');

Route: :resource('categories', 'CategoriesController');

Colocando dentro de:

Route: :group(/'prefix' => 'admin'], function () {
//rotas
1)

O resultado final:

Route: :group(/'prefix' => 'admin'], function () {
Route: :match(
['get', 'post'],
' /products/categories/{id}"',

['uses'=>"'ProductsController@categories', 'as'=>'products.categories']
);
Route: :resource('products', 'ProductsController');
Route: :resource('users', 'UsersController');
Route: :resource('categories', 'CategoriesController');

});

Tem um detalhe, todos os nomes de rotas que o Route: :resource cria recebe um admin. por conta
do prefix que usamos, por exemplo, a products.index mudou para admin.products.index, vocé
deve receber um erro ao acessar a administracao.

Embora essa mudanca nao programada possa parecer problematico para a maioria, isso te ajuda a
organizar melhor sua aplicagdo quando ela tem véarias “sessdes” ou “areas”, imagine o WebDevBr*?,

®http://www.webdevbr.com.br

http://www.webdevbr.com.br
http://www.webdevbr.com.br

0 N O O B W N -

W W N DNDNDNDDNDNDNDDNDNNNDMNNASAPAPS PSP
O O 00 9 O O i WO N O O 00 3O O b WO N~ O O

Painel de administracio 82

eu tenho um CRUD de cursos na administracdo e um CRUD de cursos para o professor, outro
controller cursos para a loja e outro para a area do aluno, cada um com suas validacdes e models
diferentes (sim, tenho regras diferentes em todos os casos), poderia diminuir a quantidade de
controllers, mas classes menores geram cédigo mais simples de manter (ndo exagere), veja como
ficam as minhas rotas.

+ admin.courses.index
« professor.courses.index

Veja como fica a nossa view users/index.blade.php com as rotas corrigidas.

@extends('layouts.admin')

@section('content"')
<h1 class="page-header">
Usuarios

<small><a href="{{ route('admin.users.create') }}" class="btn btn-success b\

tn-xs">novo</small>
</h1>

<table class="table table-hover table-striped">

<thead>
<tr>
<th>id</th>
<th>name</th>
<th>mail</th>
<th class="text-right">actions</th>
</tr>
</thead>
<tbody>
@foreach ($data as $k=>$v)
<tr>

<td> {{ $k+1 }r</td>

<td>{{ $v->name }}</td>
<td>{{ $v->email }}</td>
<td class="text-right">

$v->id]) }}"

imary btn-xs">view

$v->id]) }}"

fault btn-xs">edit
<form action="{{ route('admin.users.update',
m" method="POST" style="display:inline-block">

["id'=>$v->1ic

32
33
34
35
36
37
38
39
40
41

, O O 0 9 O O b W N =~

R

Painel de administracio 83

<input type="hidden" name="_token" value="{{ csrf.
<input type="hidden" name="_method" value="DELETE'
<input type="submit" value="remove" class="btn btr
</form>
</td>
</tr>
@endforeach
</tbody>
</table>
@endsection

E 0 nosso CrudController também recebe o admin. em todos os redirects:
return redirect()->route('admin.'.$this->path.'.index"');

Outra vantagem em agrupar rotas é a facilidade que temos em trabalhar com namespaces, sub-
dominios e middleware, tudo o que é configurado no grupo reflete automaticamente em todas as
rotas dentro dele.

Com grupos de rotas eu posso organizar os controllers, estes que criamos sdo para a administracao,
nao quero usar os mesmos para a loja virtual, quanto menor e mais focada as classes melhor para a
manutencao.

A melhor forma de fazer isso é adicionando um sub-namespace, isso ira, consequentemente,
adicionar um novo diretério também, o sub-namespace sera o Admin.

Route: :group(/'prefix' => 'admin', 'namespace' => 'Admin'], function () {
Route: :match(
['get', 'post'],
'/products/categories/{id}",

['uses'=>"'ProductsController@categories', 'as'=>'products.categories']
);
Route: :resource('products', 'ProductsController');
Route: :resource('users', 'UsersController');

Route: :resource('categories', 'CategoriesController');

});

Os controllers CategoriesController, ProductsController e UsersController agora recebem um
novo sub-namespace e devem ser movidos para o novo diretério app/Http/Controllers/Admin, neste
ponto vocé pode receber um erro informando que a classe CrudController nio foi encontrada, é s6
informar no use, deve ficar assim:

O = W N =

Painel de administracio 84

<?php
namespace App\Http\Controllers\Admin;

use App\Http\Controllers\CrudController;

Agora sim, tudo organizado!

Para ter um panorama mais detalhado deste passo vocé pode consultar este capitulo da documenta-
cdo (em inglés) http://laravel.com/docs/5.1/routing#route-groups*”.

Middleware

Middleware ou mediador, no campo da computacdo distribuida, é um programa de
computador que faz a mediacdo entre software e demais aplicagdes. E utilizado para
mover ou transportar informacoes e dados entre programas de diferentes protocolos de
comunicacao, plataformas e dependéncias do sistema operacional. — Wikipedia

No Laravel, os middleware interceptam a requisicio HTTP antes de ser enviado para o controller
e com isso podemos filtrar ou tomar uma decisdo antes que qualquer outra coisa seja feita e isso é
fantastico, ja que podemos usar o middleware de autenticacdo (que ja esta pronto) para permitir o
acesso ou redirecionar para a pagina de login.

Além da autenticacdo o Laravel ja vem com alguns middlewares prontos para serem usados e
disponiveis em app/Http/Middleware, citando a documentacao:

Existem varios middlewares incluidos no Laravel Framework, incluindo middleware
para manutencao, autenticagao, prote¢io CSRF, e muito mais. Todos estes middleware
estdo localizados no diretorio app/Http/Middleware.

Agora que vocé entendeu o que ¢ um middleware vamos construir nossa autenticagao.

Para ter um panorama mais detalhado deste passo vocé pode consultar este capitulo da documenta-
¢do (em inglés) http://laravel.com/docs/5.1/middleware.

Como configurar a autenticacao

Para comecar crie as rotas de autenticacdo fora do nosso grupo.

"http://laravel.com/docs/5.1/routing#route-groups
*%http://laravel.com/docs/5.1/middleware

http://laravel.com/docs/5.1/routing#route-groups
http://laravel.com/docs/5.1/middleware
http://laravel.com/docs/5.1/routing#route-groups
http://laravel.com/docs/5.1/middleware

0 I O O b W N =~

NN NN NN B B 1 S s s
O = 0O N~ O O 0O O kb W N~ OO O

Painel de administracio 85

Route: :get('admin/auth/login', 'Auth\AuthController@getlLogin');
Route: :post('admin/auth/login', 'Auth\AuthController@postlLogin');
Route: :get('admin/auth/logout', 'Auth\AuthController@getlLogout');

O controller Auth\AuthController ja vem pronto junto com o Laravel, mas a views ndo, entao
crie um diretdrio de view chamado auth e dentro um arquivo chamado login.blade.php com este
conteudo:

@extends('layouts.admin')

@section('content")
<h1 class="page-header text-center">Autenticagdo</h1>
<form method="POST" action="/admin/auth/login" class="col-md-4 col-md-offset\
_4">
{1l esrf_field() !!}
<div>
Email
<input type="email" name="email" value="{{ old('email') }}" class="f\
orm-control">
</div>
<div>
Password
<input type="password" name="password" id="password" class="form-con\
trol">
</div>
<div>
<input type="checkbox" name="remember"> Remember Me
</div>
<div>
<button type="submit" class="btn btn-primary">Login</button>
</div>
</form>

@endsection

Quase pronto, agora precisamos proteger as paginas, para isso vamos até o nosso grupo de rotas
admin e adicionar o middleware:

0 = O O b W N =~

(AN
N =~ O O

Painel de administracio 86

Route: :group(/'prefix' => 'admin', 'namespace' => 'Admin', 'middleware'=>'auth']\
, function () {

1)

Route: :match(
['get', 'post'],
'/products/categories/{id}",

['uses'=>"'ProductsController@categories', 'as'=>'products.categories']
);
Route: :resource('products', 'ProductsController');
Route: :resource('users', 'UsersController');
Route: :resource('categories', 'CategoriesController');

Route: :get('auth/login', 'Auth\AuthController@getlLogin');
Route: :post('auth/login', 'Auth\AuthController@postlLogin');
Route: :get('auth/logout', 'Auth\AuthController@getlLogout');

Agora quando tentarmos acessar qualquer pagina da administracdo seremos redirecionados para a
/auth/login e epa! Como assim? Nao era /admin/auth/login, cade o admin na rota, precisamos
acertar isso. Va até o middleware Authenticate em app/Http/Middleware/Authenticate.php e no
método handle(), altere no else (linha 41, aproximadamente) de:

return redirect()->guest('auth/login');

Para:

return redirect()->guest('admin/auth/login');

Agora fomos para o local certo, mas com um erro de loop, para resolver isso apenas faca uma
verificagao de rota:

public function handle($request, Closure $next)

{

if ($this->auth->guest()) {
if ($request-rajax()) {
return response('Unauthorized.', 401);
} else if ($request->path() != 'admin/auth/login') {
return redirect()->guest('admin/auth/login");

return $next($request);

Painel de administracio 87

Preste atencao ali noelse if.

Agora no controller AuthController vamos adicionar dois atributos.

protected $loginPath = '/admin/auth/login'; //endereco de login
protected $redirectPath = '/admin/products'; //endereco de redirecionamento apds\
o login

Pronto, agora vocé deve ser capaz de acessar com seu email e senha, para deslogar acesse

/admin/auth/logout.

Para ter um panorama mais detalhado deste passo vocé pode consultar este capitulo da documenta-
¢do (em inglés) http://laravel.com/docs/5.1/authentication®'.

*'http://laravel.com/docs/5.1/authentication

http://laravel.com/docs/5.1/authentication
http://laravel.com/docs/5.1/authentication

Site
Tema da loja

Em breve.

Listagem de categorias com View Composer

Em breve.

Listagem de produtos por categorias

Em breve.

Pagina de produtos

Em breve.

Carrinho de compras

Criando model sem acesso a banco de dados

Em breve.

Adicionar produto

Em breve.

Remover produto

Em breve.

Alterar quantidade de um produto

Em breve.

Listar no carrinho de compras

Em breve.

Finalizar compra com registro ou login do usuario

Em breve.

Integracao com Web Services

Integrando com o PagSeguro

Em breve.

Integrando com os Correios

Em breve.

	Sumário
	Introdução
	Ambiente de desenvolvimento
	O que é Orientação a Objetos?
	O que é MVC
	O que é um framework
	O que vamos desenvolver?
	Aonde conseguir ajuda?
	Projeto final

	Preparando o Laravel
	Instalando o Laravel 5
	Rodando o PHP Built-In Server com Artisan
	Configurações iniciais
	Configurando o banco de dados
	Conhecendo o banco de dados do nosso projeto
	Criando arquivos de Migration
	Criado um arquivo de Seed

	Model, View e Controller
	Rotas
	Criando um controller
	Criando um controller com artisan
	Consultando o banco de dados
	Criando um model

	CRUD
	Criando views
	Listando produtos
	Cadastrando um produto
	Retornando um produto
	Editando o usuário
	Removendo o usuário
	Abstraindo o CRUD

	Validações
	Relacionamentos
	Painel de administração
	Tema da administração
	Rota com /admin
	Middleware
	Como configurar a autenticação

	Site
	Tema da loja
	Listagem de categorias com View Composer
	Listagem de produtos por categorias
	Página de produtos

	Carrinho de compras
	Criando model sem acesso a banco de dados
	Adicionar produto
	Remover produto
	Alterar quantidade de um produto
	Listar no carrinho de compras
	Finalizar compra com registro ou login do usuário

	Integração com Web Services
	Integrando com o PagSeguro
	Integrando com os Correios

